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The sad story of my life: how the whole thing started
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How a dimmer works

 



Solution: predicting the very near future
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◮ What kind of extrapolation functions should we use?

◮ This is a very unusual signal processing problem: we are
interested in extremely local, “microscopic” signal behavior.



Towards local signal representation

◮ Let f ∈ BL(π), i.e., f ∈ L2 with ̂f (ω) supported on [−π, π]
————————————————————————————

Shannon’s Expansion: f (t) =
∞∑

n=−∞
f (n)

sin π(t − n)

π(t − n)
(Whittaker–Kotelnikov–Nyquist–Shannon)

◮ global in nature – requires samples f (n) for all n;
◮ fundamental to signal processing;
◮ poorly represents local signal behavior
————————————————————————————

Taylor’s Expansion: f (t) =
∞∑

n=0

f (n)(0)
tn

n!

◮ local in nature – requires f (n)(t) at a single instant t = 0.
◮ very little use in signal processing – why ?



Problems with Taylor’s expansion of BL(π) signals

1. Numerical evaluation of derivatives of high orders of a
noisy sampled signal is unfeasible.

2. Truncations of Shannon’s expansion of an f ∈ BL(π)

– belong to BL(π)

– converge to f both uniformly and in L2

– if A is a filter, then

A[f ](t) =
∑∞

n=−∞ f (n) A [sinc ] (t − n), (1)

– In comparison, truncations of Taylor’s expansion of an
f ∈ BL(π) have none of these important properties

Can we fix all of these problems???



Numerical differentiation of band limited signals

Let f ∈ BL(π); then
f (n)(t)

πn
=

1

2π

∫ π

−π
in

(
ω

π

)n ̂f (ω)ei ωtdω.
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Figure: (ω/π)
n

for n = 15 − 18

◮ derivatives of high order obliterate the spectrum.

◮ transfer functions of the (normalized) derivatives cluster
together and are nearly indistinguishable.

◮ can we find a better base for the space of linear differential
operators? An orthogonal base??



Orthogonal base for the space of linear diff. operators

◮ Start with normalized and re-scaled Legendre polynomials:

1

2π

∫ π

−π
PL

n(ω)PL

m(ω)dω = δ(m − n).

◮ Obtain operator polynomials by replacing ωk with ik dk/dtk :

Kn
t = (−i)nPL

n

(
i

d

dt

)

◮ Definition of Kn chosen so that

Kn
t [ei ωt ] = inPL

n(ω) ei ωt .

◮ Thus, for f ∈ BL(π),

Kn [f ](t) =
1

2π

∫ π

−π
inPL

n(ω) ̂f (ω)ei ωtdω.



Why are chromatic derivatives a better base?
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◮ Compare the graphs of the
transfer functions of 1/πndn/dtn ,
i.e., (ω/π)n (first graph) and of
Kn , i.e., PL

n(ω) (second graph).

◮ Transfer functions of Kn form
a sequence of well separated
comb filters which preserve
spectral features of the signal,
thus we call them the
chromatic derivatives.

◮ Third graph: transfer
function of the ideal filter K15

(red) vs. transfer function of a
transversal filter (blue),
(128 taps, 2× oversampling.)



Local representation of the scalar product in BL(π)

Proposition: Assume that f , g ∈ BL(π); then the sums on the
left hand side of the following equations do not depend on the
choice of the instant t, and

∞∑

n=0

K n[f ](t)2 =

∫ ∞

−∞
f (x)2dx = ‖f ‖2

∞∑

n=0

K n[f ](t)K n [g](t) =

∫ ∞

−∞
f (x)g(x)dx = 〈f , g〉

∞∑

n=0

K n [f ](t)K n
t [g(u − t)] =

∫ ∞

−∞
f (x)g(u − x)dx = (f ∗ g)(u)

◮ These are the local equivalents of the usual, “globally
defined” norm, scalar product and convolution!

◮ Aim: “maximally localized” signal processing,
suitable for transient analysis.



Fixing Taylor’s Expansion: Chromatic Expansion

Proposition: Let sinc (t) =
sin(πt)

πt
and let f (t) be any

analytic function. Then,

f (t) =
∞∑

n=0

(−1)nKn [f ](0) Kn [sinc (t)]

=
∞∑

n=0

Kn [f ](0)
√

2n + 1 jn(πt)

jn(t) — the spherical Bessel functions of the first kind

◮ The truncations of the series belong to BL(π).

◮ If f ∈ BL(π) the series converges to f (t) both
uniformly and in L2.

◮ Both a good and a bad news??



Chromatic approximation versus Taylor’s approximation
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◮ red: the signal; blue: the chromatic approximation of
order 15; green: the Taylor approximation of order 15.

◮ f (k)(0) = dk

dtk [
∑n

m=0(−1)m Km [f ](0) Km [sinc ](t)]t=0

◮ Chromatic approximations are local approximations
◮ kth derivative approximated with order n − k expansion
◮ We can locally alias any waveform



Approximation error behavior
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∣∣∣f (t) −
n∑

m=0

(−1)m Km [f ](0) Km [sinc ](t)
∣∣∣ ≤ ‖f ‖2 E(t) (2)

E(t) =

√√√√1 −
n∑

m=0

Km [m](t)2



Chromatic expansion vs. Shannon’s expansion

How is Shannon expansion

f (t) =
∑∞

n=−∞ f (n) sin π(t−n)
π(t−n)

related to the chromatic expansion

f (t) =
∑∞

n=0 Kn [f ](0)
√

2n + 1 jn(πt)

◮ Transformation {f (n)}n∈N ⇔ {Kn [f ](0)}n∈N by an
unitary operator defined by the infinite matrix

[√
2k + 1 jk(nπ) : k ∈ N, n ∈ Z

]
:

f (n) =
∞∑

k=0

Kk [f ](0)
√

2k + 1 jk(nπ);

Kk [f ](0) =
∞∑

n=−∞
f (n)

√
2k + 1 jk(nπ).



◮ In practice one CANNOT evaluate Kk [f ](0) using Shannon
rate samples via

Kk [f ](0) ≈
N∑

n=−N

f (n)
√

2k + 1 jk(nπ)

because
√

2n + 1 jn(πt) decay very slowly and we would need
huge N .
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Figure: n = 0, n = 7, n = 14



Chromatic derivatives are non-redundant!

◮ This is a good news because this means that chromatic
derivatives are non redundant to the Nyquist rate samples;

◮ They provide additional “information which can be used in
addition to the standard Nyquist rate methods making them
more powerful.

◮ Extremely convenient for regularized least squares:

◮ Minimize
∑

j

(
N∑

n=0

Xn

√
2n + 1 jn(πtj) − sj)

2 + µ
N∑

n=0

X2
n

◮ signal in BL(π) iff
∑∞

n=0 Kn [f ](t)2 < ∞
◮ interpolation functions are bounded;

◮ extremely robust for choices of N and µ.



So did the amplifier work: chromatic extrapolation
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View of the left and right ends of extrapolation af (t)
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Truncation of a(t) is time
limited and nearly band
limited:

|â(ω)| ≤ |Kn [a]̂(ω)|
|Pn(ω)| ≤ M

|Pn(ω)|



General families of chromatic derivatives

◮ Given a family of orthonormal polynomials Pn(ω) we can
always define differential operators

Kn
t = (−i)n PL

n

(
i

d

dt

)

Question:

What are the families of orthogonal polynomials such
that for the corresponding differential operators K n

and some associated function m(t) we have

f (t) =
∞∑

n=0

(−1)nK n [f ](u)K n [m](t − u)

for important classes of functions, and when is the
convergence uniform?



Examples:
Legendre Polynomials/Spherical Bessel functions

◮ For the (normalized) Legendre polynomials

1

2π

∫ π

−π
PL

n(ω)PL

m(ω)dω = δ(m − n)

and for m(t) = sin(πt)
πt

we have Kn [m](t)=(−1)n
√

2n + 1 jn(πt)
and

f (t) =
∞∑

n=0

Kn [f ](0)
√

2n + 1 jn(πt)

holds for all analytic functions;

◮ The convergence is uniform for functions in BL(π)



Examples:
Chebyshev polynomials /Bessel functions

◮ For the (normalized) Chebyshev polynomials of the first
kind:

∫ π

−π

PT

n (ω)PT

m(ω)

π2
√

1 −
(

ω
π

)2
dω = δ(n − m).

for m(t) = J0(πt) we have Kn [m](t) = (−1)n
√

2 Jn(πt) and

f (t) = f (u)J0(πt) +
√

2
∞∑

n=1

Kn [f ](0)Jn(πt)

◮ The Neumann series - converges for all analytic functions;

◮ Convergence uniform for band limited functions which satisfy
∫ π

−π
|f̂ (ω)|2

√
1 − (ω/π)2 dω < ∞



Examples:
Hermite polynomials/Gaussian monomials

◮ For the (normalized) Hermite polynomials
∫ ∞

−∞
PH

n (ω)PH

m(ω)
e−ω2

√
π

dω = δ(n − m)

and m(t) = e−t2/4 we have Kn [m](t) = (−1)n tn

√
2n n!

e−t2/4

◮ chromatic expansion converges for analytic functions s.t.

lim sup
n→∞

|f (n)(z)|1/n

√
n

< ∞

◮ converges uniformly for all analytic functions s.t.

∫ ∞

−∞
| ̂f (ω)|2 eω2

dω < ∞



Examples: the hyperbolic family

If Ln(ω) satisfy

1

2

∫ ∞

−∞
Ln(ω) Lm(ω) sech

(
πω

2

)
dω = δ(m − n)

and m(z) = sech(z) then Kn [m](z) = (−1)n sech(z)tanhn(z)
and

f (z) =
∞∑

n=0

Kn [f ](0) sech(z)tanhn(z)

converges uniformly inside the disc |z| < π/2 for functions
analytic inside this disc, and whose Fourier transform satisfies

∫ ∞

−∞
|f̂ (ω)|2 cosh(ω)dω < ∞



General families of chromatic derivatives

Definition: A family of polynomials Pn(ω) which is
orthonormal with respect to a non-decreasing bounded
moment distribution function a(ω):

∫ ∞

−∞
Pn(ω)Pm(ω)da(ω)

is chromatic if the moments µn of a(ω),

µn =

∫ ∞

−∞
ωn

da(ω)

satisfy

ρ = lim sup
n→∞

µ
1/n
n

n
< ∞

Lemma: Pn(ω) are chromatic if and only if for every 0 ≤ α < ρ,
∫ ∞

−∞
eα|ω|

da(ω) < ∞



General families of chromatic derivatives

Theorem: Let Pn(ω) be a chromatic family of polynomials
orthonormal with respect to a(ω), and let

m(z) =

∫ ∞

−∞
eiωt

da(ω)

Then m(z) is analytic on the strip Sρ/2 = {z : |Im(z)| < ρ/2}.

Definition: L2
a(ω) is the space of functions φ(ω) satisfying

∫ ∞

−∞
|φ(ω)|2da(ω) < ∞.



General families of chromatic derivatives

Theorem: If Pn(ω) are a chromatic family of polynomials
orthonormal with respect to a(ω), then they are a complete
base of the space L2

a(ω).

Definition: Λ2 is the space of functions f (t) analytic on Sρ/2

such that for the chromatic derivatives Kn which correspond to
Pn(ω) we have

∞∑

n=0

|Kn [f ](0)|2 < ∞.

Theorem: A function f (z) is in Λ2 if and only if there exists a
function φf (ω) such that

f (z) =

∫ ∞

−∞
φf (ω)ei ωz

da(ω)

in which case

φf (ω) =
∞∑

n=0

Kn [f ](0)Pn(ω)



General families of chromatic derivatives

Theorem: If f (z) ∈ Λ2, then

f (z) =
∞∑

n=0

(−1)nKn [f ](0)Kn [m](t)

with the series converging uniformly on strips Sρ/2−ǫ.



A geometric interpretation

◮ Let f ∈ LM

2 and t ∈ R; then f 7→ 〈〈Km [f ](t)〉〉m∈N is an
isomorphism between LM

2 and l2.

◮ The orthonormal base {Kn [m](t)}n∈N of LM

2 is then mapped
into an orthonormal base {〈〈(Km ◦ Kn)[m](t)〉〉m∈N}n∈N.

◮ For every t,

〈〈Km [f ](t)〉〉m∈N =
∞∑

n=0

Kn [f ](0)〈〈(Km ◦ Kn)[m](t)〉〉m∈N

◮ Let ~en+1(t) = 〈〈(Kn ◦ Km)[m](t)〉〉m∈N and let H (t) be an
antiderivative of ~e1. Then ~e1(t) = ~H ′(t) and

~e ′
1 (t) = γ0 ~e2(t) (γn- three term recursion coeff’s)

~e ′
k (t) = −γk−2 ~ek−1(t) + γk−1 ~ek+1(t), for k ≥ 2.

◮ These are the Frenet–Serret formulas; {~en+1(t)}n∈N are the
moving frame of the helix H (t) in l2, with curvatures = the
recursion coefficients of the three term recurrence formula!



General families of chromatic derivatives

Theorem: If f (z) ∈ Λ2, then

f (z) =
∞∑

n=0

(−1)nKn [f ](0)Kn [m](t)

with the series converging uniformly on strips Sρ/2−ǫ.

How about the local (non-uniform) convergence of the
chromatic series??

For example, in the case of the Chebyshev polynomials Tn(ω)
and the Bessel functions of the first kind Jn(ω), we know that
the chromatic series is just the Newmann series, and that the
above equality holds for every analytic function f (z) !



Weakly bounded families

Theorem: A family of polynomials is orthonormal with respect
to a moment distribution function a(ω) with all odd moments
µ2n+1 = 0 if and only if there exist γn > 0 such that

Pn+1(ω) =
1

γn
ω Pn(ω) − γn−1

γn
Pn−1(ω).

Definition: Such family of polynomials Pn(ω) is:

1. bounded if for some M and all n we have
1

M
≤ γn ≤ M .

2. weakly bounded if for some 0 ≤ p < 1 we have

1

M
< γn < M np and

γn

γn+1
< M

◮ Bounded families are also weakly bounded with p = 0.



Examples:

◮ Bounded families (p = 0):

◮ Legendre polynomials: γn = π(n+1)√
4(n+1)2−1

→ π
2

◮ Chebyshev polynomials: γ0 = π√
2

and γn+1 = π
2

◮ Weakly bounded family (p = 1/2):

◮ Hermite polynomials: γn =
√

(n + 1)/2;

◮ Non - weakly bounded family (p = 1):

◮ Hyperbolic family: γn = n + 1;

◮ This shows that if we want m(z) to be entire, then
the bound p < 1 is sharp.



Lemma: Every weakly bounded family of orthonormal
polynomials is also chromatic.

Theorem: Let {Pn(ω)}n∈N be a weakly bounded family and
let f (z) be an entire function. If

lim
n→∞

∣∣∣∣∣
f (n)(0)

n!1−p

∣∣∣∣∣

1/n

= 0

then for every z ∈ C

f (z) =
∞∑

j=0

(−1)jKj [f ](0) Kj [m](z).

The convergence is uniform on every disc of finite radius.

Corollary: If M is bounded then the chromatic expansion of
every entire function f (z) point-wise converges to f (z) for all z.



◮ It turns out that many of the classical formulas such as

ei ωt =
∑∞

n=0 inTn(ω)Jn(t)

J0(t + u) = J0(u)J0(t) + 2
∑∞

n=1(−1)nJn(u)Jn(t)

J0(t)2 + 2
∑∞

k=1 Jn(t)2 = 1

J0(z) + 2
∑∞

n=1 J2n(z) = 1

are special cases of chromatic expansions valid for all weakly
bounded families of polynomials and their associated m(z):

ei ωt =
∑∞

n=0 inPn(ω)Kn [m](t)

m(t + u) =
∑∞

n=0(−1)nKn [m](u)Kn [m](t)
∑∞

k=1 Kn [m](t)2 = 1

m(z) +
∑∞

n=1

(∏n
k=1

γ2k−2

γ2k−1

)
K2n [m](z) = 1



Theorem: Assume M is weakly bounded and let k be such
that k ≥ 1/(1 − p); then:

(a) there exists K > 0 such that

|Kn [m](z)| <
|Kz|n
n!1−p

e|Kz|k ;

(b) for every f (t) ∈ Λ2 there exists C , L > 0 such that

|f (z)| ≤ CeL|z|k .



A (mild) generalization of the Paley-Wienner
Theorem??

Assume that f (z) is an entire function for which there exist a
symmetric moment distribution function a(ω) and a function
ϕ(ω) ∈ L2

a(ω) such that

f (z) =

∫ ∞

−∞
φ(ω)ei zωda(ω).

Are the following are equivalent:

(a) f is of exponential type, i.e., there exist C , L > 0 such
that

|f (z)| < CeL|z|, (z ∈ C);

(b) a(ω) can be chosen such that da(ω) is finitely supported.



A real generalization of the Paley - Wienner Theorem??

Assume that f (z) is an entire function for which there exist a
symmetric moment distribution function a(ω) and a function
ϕ(ω) ∈ L2

a(ω) such that

f (z) =

∫ ∞

−∞
φ(ω)ei zωda(ω),

and let k ≥ 1 be an integer. Are the following equivalent:

(c) there exist C , L > 0 such that

|f (z)| < CeL|z|m , (z ∈ C);

(d) a(ω) can be chosen such that the corresponding γn

satisfy γn < Mnp for some 0 ≤ p ≤ 1 − 1/k.



Some more open questions:

Qestion: Is it possible to characterize weakly bounded families
purely in terms of the properties of the corresponding a(ω)?

Qestion: If not, is it possible to characterize functionals M for
which ∫ ∞

−∞
eα|ω|

da(ω) < ∞

purely in terms of the asymptotic behavior of the recursion
coefficients γn of the corresponding family of orthonormal
polynomials?



Periodic functions

◮ Trigonometric functions do not belong to the spaces Λ2:

‖eiωt‖2
Λ =

∞∑

n=0

|Kn [eiωt ]|2 =
∞∑

n=0

Pn(ω)2 → ∞

Definition: Assume M is weakly bounded. We denote by C
the vector space of analytic functions such that the sequence

νf
n(t) =

1

(n + 1)1−p

n∑

k=0

Kk [f ](t)2

converges uniformly on every finite interval.

Definition: Let C0 ⊂ C consists of f (t) such that

lim
n→∞

1

(n + 1)1−p

n∑

k=0

Kk [f ](t)2 = 0.

We define C2 = C/C0.



Theorem: Let f , g ∈ C and

σfg
n (t) =

1

(n + 1)1−p

n∑

k=0

Kk [f ](t)Kk [g](t);

then the sequence {σfg
n (t)}n∈N converges to a constant function.

Definition: For f , g ∈ C we define

〈f , g〉 =
1

(n + 1)1−p

n∑

k=0

Kk [f ](t)Kk [g](t)

◮ Do the trigonometric functions belong to C2?

1

(n + 1)1−p

n∑

k=0

|Kk [eiωt ]|2 =
1

(n + 1)1−p

n∑

k=0

Pn(ω)2



◮ Chebyshev polynomials: (p = 0) if 0 < ω < π then

‖eiωt‖ = lim
n→∞

1

n + 1

n∑

k=0

PT

n (ω)2 = 1

◮ for all 0 < σ, ω < π, σ 6= ω

〈eiσt , eiωt〉 = lim
n→∞

1

n + 1

n∑

k=0

PT

k (σ)PT

k (ω) = 0

◮ Hermite polynomials: (p = 1/2) for all ω, σ > 0, ω 6= σ,

‖eiωt‖ = lim
n→∞

1√
n + 1

n∑

k=0

PH

k (ω)2 =

√
2

π
eω2

,

〈eiσt , eiωt〉 = lim
n→∞

1√
n + 1

n∑

k=0

PH

k (σ)PH

k (ω) = 0

Thus, in this space every two pure harmonic oscillations with
distinct positive frequencies are mutually orthogonal!



Conjecture: Assume that for some 0 ≤ p < 1 the recursion
coefficients γn satisfy

0 < lim
n→∞

γn

np
< ∞.

Then for the corresponding family of orthogonal polynomials we
have

0 < lim
n→∞

1

(n + 1)1−p

n∑

k=0

Pk(ω)2 < ∞

for all ω in the support sp(a) of a(ω).

Numerical experiments indicate that this is true...

It turns out that the special case with p = 0 is a previously well
known, still open problem (P. Nevai).



New developments:

Definition: A family of polynomials Pn(ω) is weakly
bounded if for some 0 ≤ p ≤ 1 we have

1

M
< γn ,

γn

γn+1
< M and γn < M np.

It turns out that we can replace this with the more general

1

M
< γn,

γn

γn+1
< M and

n∑

k=1

1

γk
diverges

Then, if in all theorems we replace sums of the form

∑n
k=0 . . .

(n + 1)1−p

with

∑n
k=0 . . .

∑n
k=0

1
γk

all proofs go through!



The more general conjecture:

Conjecture: Assume that the recursion coefficients γn are such
that

lim
n→∞

n∑

k=0

1

γk

diverges, plus some mild other condition; (for example the
assumption that γn are non-decreasing suffices but is way an
overkill.) Then for the corresponding family of orthogonal
polynomials we have

0 < lim
n→∞

∑n
k=0 Pk(ω)2

∑n
k=0

1
γk

< ∞

for all ω in the support sp(a) of a(ω).

Numerical experiments indicate that this is also true...



Application: signal interpolation

N TT N T N N
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Given pieces of band limited
signals join them so that the
out of band energy is
minimal.

We use chromatic expansions
to ensure that the resulting
signal is N times continuously
differentiable Then

|f̂ (ω)| ≤ |Kn [f ]̂(ω)|
|Pn(ω)| ≤ M

|Pn(ω)|



Application: frequency estimation

Idea: A signal is a sum of at most N shifted and damped sine

waves iff it is a solution to a homogeneous linear differential

equation with constant coefficients of order at most 2N.

A rough sketch of the frequency estimation algorithm:

◮ Choose the chromatic derivatives which are orthogonal with
respect to the power spectrum density of the noise:

◮ take polynomials Pn(ω) such that

1

2π

∫ π

−π
Pn(ω)Pm(ω)S(ω)dω = δ(m − n)

◮ Let Kn be the chromatic derivatives corresponding to the
polynomials Pn(ω), i.e., let

Kn = (− i)nPn(− i d/dt).



Then, assuming E [ν(n)2] = ρ2, we have

E{Kn [ν](n)Km [ν](n)} = δ(m − n)ρ2

so we can apply the standard SVD or ED methods.

K1[f]

K2[f]

K3[f]

K4[f]

K0[f]

1     2     3     4    5     6     7     8    9    10   11   12

1     2     3     4    5     6     7     8    9    10   11   12

error Cazdow’s method: 0.0025;
error Cazdow’s method+CD method: 0.0018
(SNR= −10db; 10 000 runs)



What if we allow time varying coefficients? We can easily detect
chirps, ets. In fact, transients can be classified according to
what type of differential eqation they satisfy!

CONJECTURE:

Classification via the minimal degree linear differential
equation (with time varying coefficients) satisfied by a
transient can play the role which the spectrum plays
for the “steady state” signals!!



My website

http://www.cse.unsw.edu.au/˜ignjat/diff/

contains papers on chromatic derivatives as well as some
programs. The most complete presentation is in “ Chromatic
Derivatives, Chromatic Expansions and Associated Spaces”,
available as
http://www.cse.unsw.edu.au/˜ignjat/diff/ChromaticDerivatives.pdf

The programs are mostly an uncommented mess, except

perhaps for the tutorial available at the above web

page, but I will clean them up and and comment them

before the end of the year, hopefully.

If you have a slightest interest in this stuff please

do get in touch, I’d love to collaborate!


