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Abstract. We consider a matching problem, which is meaningful in
team competitions, as well as in information theory, recommender sys-
tems, and assignment problems. In the competitions which we study,
each competitor in a team order plays a match with the corresponding
opposing player. The team that wins more matches wins. We consider
a problem where the input is the graph of probabilities that a team 1
player can win against the team 2 player, and the output is the optimal
ordering of team 1 players given the fixed ordering of team 2. Our central
result is a polynomial-time approximation scheme (PTAS) to compute a
matching whose winning probability is at most ε less than the winning
probability of the optimal matching. We also provide tractability results
for several special cases of the problem, as well as an analytical bound
on how far the winning probability of a maximum weight matching of
the underlying graph is from the best achievable winning probability.

1 Introduction

Bipartite matching underpins several impactful problems in allocation and mar-
ket design problems including kidney allocation, adword auctions, on demand
taxi allocation, refugee assignment, or school choice (see, e.g., [11]). We consider
a fundamental matching problem with an underlying weighted bipartite graph
where each edge weight has weight between 0 and 1. Instead of focusing on the
classical objective of maximizing the total weight of the matching, we focus on
a different objective with a probabilistic interpretation: We want to compute a
matching that maximizes the probability of reaching a target size. This problem
can model several scenarios, including that of the so called team order problem.

One of the most relevant applications of our setting is the rivalry between
teams of contestants. Consider team competitions in which both teams put for-
ward an ordering of their players. The contestants then play matches against the
corresponding contestants from the opposing team. The team that wins more
matches wins the overall competition. Such competitions are not only held in
various inter-club tennis competitions, the same format is also used in inter-
national table tennis and badminton competitions, such as the Corbillon Cup,
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Swaythling Cup, Thomas Cup, and the Olympic Games. We focus on the prob-
lem in which one team’s order is fixed (as is the case in many situations where
the home team commits to an ordering) and the other team wants to compute
the optimal ordering. As the ordering of one team is fixed, the problem of com-
puting the other team’s ordering is essentially a competitor matching problem.

The problem of finding a way to maximize the number of achieved goals by
setting an appropriate line-up is not limited to sport competitions. Indeed, it
admits several other motivations in competitive contexts such as politics (field-
ing political candidates in different constituencies against candidates of a rival
party). Our problem also provides a perspective into finding durable matchings.
Suppose that we are given the probability of success of various partnerships. For
example a partnership could represent a job placement or allocation of refugee
family to a council (see, e.g., [7, 2]). A typical objective could be maximizing the
expected number of partnerships. However, another meaningful objective that is
centred around a particular target could be to maximize the probability of hav-
ing a target number of successful partnerships, which maps to the objective that
we study. Another potential application of our research relates to information
networks (see, e.g., [21]). Suppose that we are given such a network, represented
by a flow network. There, each edge has a reliability probability of a message
reaching the other side, and we want to find a flow maximizing probability of
delivering a target number of messages. Finally, our research is motivated by its
applications in recommendation systems (see, e.g., [25]). Suppose that a ranked
list of recommendations needs to be displayed with each item having a probabil-
ity of being clicked depending on its position in the ranking list. One may want
to maximize the probability of having a target number of items being clicked,
which can be captured by our problem. We explore the following questions.

How hard is the team order problem? Under what conditions is it easy to
solve? What are reasonable approximation approaches for the problem?

We note that the problem that we study in this paper is closely related to
the maximum-weight matching problem. There, we are given a bipartite graph,
where each edge is assigned a weight, and the objective is to find a matching with
the maximum sum of weights. In fact, our results reflect that finding the solution
to that problem provides a good approximation of the optimal solution. However,
the problem we study is substantially more complex. Indeed, for an instance of
the team order problem to be positive, we require that the weights in a selected
matching are large enough for some subset of edges, instead of maximizing their
global sum. Furthermore, given the strategic games interpretation of our setting,
our results concern the computation of the optimal response to the opponent
choice, which is an important step towards the study of equilibria in this setting.

Contributions. We first show that the winning probability of a given matching
(line-up) can be computed in polynomial time (Proposition 1). Subsequently,
we show that in certain settings computing an optimal line-up is tractable. In
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particular, when the input winning probability of each partnership takes its
value from a size-three set {α, β, 0} we show that the optimal matching can
be computed in polynomial time (Theorem 1). While we conjecture that the
team order problem is hard in the general case, we show that it is tractable for
practical purposes. Our central result is a polynomial-time approximation scheme
(PTAS)4 to compute a matching whose winning probability is at most ε less than
the winning probability of the optimal matching (Theorem 3). Although the
winning probability is not a linear objective, we show that the general problem
of computing an optimal matching can be solved via integer linear programming.
Also, we provide an analytical bound on how far the winning probability of a
maximum weight matching is from the best achievable winning probability.

2 Related Work

Our results are relevant to a number of research direction in multi-agent systems.

Matching Theory. Matching problems have been widely studied in combinato-
rial optimization. The standard objectives typically focus on maximizing the
weight of the matching (see, e.g., [9, 24]). In our context, maximizing the weight
of the underlying weighted bipartite graph gives us a matching maximizing the
expected number of matches won. Our objective is different as we want to max-
imize the probability of winning a target number of matches. The paper most
relevant to our work is by Tang et al. [28], which concerns the same setting but
considered different problems. It takes an economic design approach and presents
necessary and sufficient conditions, ensuring that truthful reporting and maxi-
mal effort in matches are equilibrium strategies. We note that the probabilistic
approach in matching has been previously studied. E.g., Aziz et al. [6] studied
the stable matching problem with uncertain preferences.

Manipulation of Competitions. Within the wider topic of manipulations in com-
petitions, there have been several papers on identifying conditions or manipula-
tions under which a certain team or player can win. A notable example is ma-
nipulating the draw of a balanced knockout tournament to maximize the proba-
bility of a certain player winning, i.e., the tournament fixing problem [30, 5, 31].
Similarly, there has also been algorithmic research on round-robin formats to
understand which teams have a chance to win the overall tournament [17, 4].

Colonel Blotto Game. Furthermore, the team line-up setting bears resemblance
to Colonel Blotto Games which are two-player zero-sum games in which two
armies fight in n battle fields with each battle being won by the army that had
more troops in the battle (see, e.g., [26, 27]). The armies are interested in maxi-
mizing a weighted sum of utilities from the battlefields where they gain victories.
Although the team-line-up setting is similar in that each battle corresponds to

4 A PTAS is a scheme which, for every instance of a problem and ε > 0, provides an
approximate solution based on ε.
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a match, in Colonel Blotto games, the armies have more flexibility in shuffling
their troops around. Secondly, in Colonel Blotto games the outcome of a battle
depends on the number of troops of each army whereas in the team line up
setting, the outcome of a match depends on the identities of the respective play-
ers. Independent of our work, Gaonkar et al. [15] considered a version of Blotto
games in which every resource is unique and non-interchangeable which makes it
close to our setting. They motivate the problem as derby games in which teams
assign each resource to a particular round and wins a payoff corresponding to
that round if they win the round. We note, however, that our work differs sig-
nificantly from their results. In particular, they examine Nash equilibria, which
are not the focus of our study. Furthermore, they do not take the information
on winning probabilities into account and do not focus on algorithmic issues.

Sequential Games. Games between teams of players in which the ordering of
contestants matters gained a substantial interest in recent literature. Fu et al.
[14] studied the scenario in which teams compete in a number of games be-
tween pairs of players. Within this setting they investigated how the sequencing
of those matches impacts the result. We note that, in contrast to our study,
the games they considered are also based on private rewards for the individual
players. Furthermore, Konishi et al. [18] studied the problem of whether the
equilibrium winning probability in such games depends on whether matches are
held simultaneously, or sequentially. Also, Fu and Lu [13] explored the topic of
how teams can strategically assign contestants to time-slots of a sequential com-
petition. Let us further note that in contrast to our work the discussed papers
on sequential games do not focus on computational complexity.

Nominee Selection. Our setting is also related to the literature on strategic se-
lection of group members participating in a competition. In social choice theory,
this problem relates to the process of selecting representative for the elections
(see, e.g., [12, 3]). Regarding sport competitions, our problem relates to choosing
a coalition member to participate in a tournament (see, e.g., [23, 22]).

3 The Team Order Problem

We consider the following problem setting.

– Two teams T1 and T2 are to play a team competition.
– Each team Ti has n contestants t1i , . . . , t

n
i .

– We have information about the winning probability p(tai , t
b
j) of any contes-

tant tai against any other contestant tbj . The instance is said to be degenerate
if all the winning probabilities are 0 or 1.

In the competition each team is required to report a line-up, i.e., an order-
ing i1, . . . , in of its contestants, which is a permutation of 1, . . . , n. Then each
contestant tiki plays a match with the corresponding contestant tjkj . The team
that wins at least ⌊n

2 ⌋+1 matches wins the competition. All of our results hold
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equally well if the target ⌊n
2 ⌋ + 1 is replaced by some generic target L that is

higher or lower than ⌊n
2 ⌋+ 1.

We will consider computational problems related to strategic aspects of decid-
ing on a line-up of players of a team. Our primary consideration is the following
problem of computing the best response to a given line-up of the opposing team.

Team Order

Input: A target probability q ∈ [0, 1] and a finite set Team Order
instance, and a (deterministic) line-up of team T2.

Question: Does there exists a line-up for team T1 under which the
probability of T1 winning against T2 is at least q?

Without loss of generality, we can assume that the line-up of T2 is fixed to
t12, . . . , t

n
2 when dealing with the Team Order problem. From a graph theoretic

perspective, it can be captured by a weighted and complete bipartite graph G =
(T1∪T2, E, p). The weight of an edge (tai , t

b
j) is winning probability p(tai , t

b
j) of any

contestant tai against any other contestant tbj . We will call G the corresponding
graph. The line-ups of the two teams correspond to a perfect matching in G,
which pairs up every player in T1 with a unique player in T2. Assuming that
matches are independent, we are interested in computing a perfect matching M
whose edge weights maximize the winning probability:

∑
S⊆{1,..,n}
|S|≥⌊n

2 ⌋+1

n∏
i∈S

p(ti1, t
M(i)
2 )

n∏
i/∈S

(
1− p(ti1, t

M(i)
2 )

)
,

where M(i) denotes the index of the player in T2 who is matched with ti1, and
each S is an outcome of the competition represented as the set of players in T1

who win against their opponents. For simplicity, we will also write the probabil-
ities as pi,j = p(ti1, t

j
2).

In fact, even when the line-ups of both teams are given, it is not immediately
clear that the winning probability of M can be computed efficiently, since there
are exponentially (in n) many possible outcomes of the competition. One way
that leads to a polynomial-time algorithm to compute this probability is via
dynamic programming, which results in the proposition below.

Proposition 1. Given the line-ups of T1 and T2, the winning probability of each
team can be computed in time O(n2).

We present an example below to illustrate the problem.

Example 1. Take an instance with the input winning probabilities as in Table 1.
Also, Team T1 has 3! different line-ups O1, . . . , O6 as illustrated in Figure 1.

Suppose that T2 uses the line-up (t12, t
2
2, t

3
2). If T1 responds with (t31, t

1
1, t

2
1)

(underlined entries), the probability that they beat T2 is 1, as they will win



6 Aziz, Gan, Lisowski, and Pourmiri

t12 t22 t32
t11 0.9∗ 1 1

t21 0.5 0.9∗ 1

t31 0 0.5 0.9∗

Table 1: Each entry (i, j) is the probability p(ti1, t
j
2).
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Fig. 1: Graph theoretic view of Example 1. There are 3! different line-ups for
T1 and each line-up is a perfect matching and has its own winning probabilities
illustrated on the edges.

two matches with certainty. On the other hand, if T1 responds with (t11, t
2
1, t

3
1)

(starred entries), their winning probability becomes

0.9× 0.9× 0.9︸ ︷︷ ︸
prob. of winning all the matches

+ 0.9× 0.9× (1− 0.9)× 3︸ ︷︷ ︸
prob. of winning exactly two matches

= 0.972.

Indeed, in the above example, the line-up (t11, t
2
1, t

3
1) corresponds to the perfect

matching with the maximum total weight in this instance. This demonstrates
that weight maximizing matchings may not be optimal solutions to Team Or-
der. The next example shows that such matchings fail to even provide any
approximation guarantee to Team Order.

Example 2. Suppose that n = 7 and the input winning probabilities are given
in Table 2. The maximum weight matching gives the guarantee of winning three
matching with certainty but losing all the others, and hence probability 0 of
winning the competition. On the other hand, the matching that gives probability
0.5 of winning four matches wins the competition with a non-zero probability.



The Team Order Problem 7

t12 t22 t32 t42 t52 t62 t72

t11 0 0 0 0.5 1 1 1

t21 0 0 0 0 0.5 1 1

t31 0 0 0 0 0 0.5 1

t41 0 0 0 0 0 0 0.5

t51 0 0 0 0 0 0 0

t61 0 0 0 0 0 0 0

t71 0 0 0 0 0 0 0

Table 2: Each entry (i, j) is the probability p(ti1, t
j
2).

The example also shows that the maximum weight matching cannot approximate
the highest winning probability within any multiplicative factor.

In the above example, the better solution has more balanced winning prob-
abilities over the matches. In view of this, one may conjecture that a leximin-
maximizing matching is optimal for the Team Order problem.5 However, the
next example disproves this conjecture: a leximin-maximizing matching may not
be optimal, even when it is also maximum weight matchings.

t12 t22 t32

t11 0.9 0.5 1

t21 0.5 0.1 1

t31 0 0 1

Table 3: Each entry (i, j) is the probability p(ti1, t
j
2).

Example 3. Suppose that n = 3 and one match is guaranteed to be won as
shown in Table 3. The edge weights of the maximum weight matchings are (1)
0.5, 0.5, 1, or (2) 0.1, 0.9, 1, and the first one is a leximin-maximizing matching.
However, the winning probabilities of these two matchings are 1 − 0.25 = 0.75
and 1− 0.09 = 0.89, respectively.

4 Tractable Variants

In this section we show that Team Order is tractable if there are only two
values of probabilities which are greater than 0 in an instance. Moreover, we

5 A vector x is leximin-greater than a vector y if x and y are in non-decreasing order
and x is lexicographically greater than y.
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ALGORITHM 1: Iterative Algorithm

Input: a Team Order instance G = (T1 ∪ T2, E, p) where pi,j ∈ {α, β, 0},
α > β > 0.

Output: an optimal solution to Team Order.

Remove all zero-weight edges of G;
opt← 0;
for s = ⌊n

2
⌋+ 1, . . . n do

Ms ← maximum weight matching of size s; // polynomial-time solvable

if Ms ̸= ∅ then
ps ← winning probability of line-up Ms; // see Proposition 1

if ps > opt then
opt← ps;
M∗ ←Ms;

end

end

end
return M∗.

demonstrate that checking if a team can win with a non-zero probability can be
done in polynomial time. Finally, we show that finding the line-up maximizing
winning all the matches is tractable. Our reasoning in this section is closely
related to the Maximum Weight Matching problem. We note that it can be
solved in O(n3) time via the Hungarian algorithm [19].

Maximum Weight Matching

Input: A bipartite graph G, weight w(e) ∈ R+ for each edge e on
G.

Question: Compute a perfect matching M of G that maximizes
w(M) :=

∑
e∈M w(e).

4.1 When Input Probabilities Have Three Values (Including 0)

Let us consider the case in which the input probabilities are from a set {α, β, 0}
and, without loss of generality, assume that α > β > 0. We note that the problem
appears closely connected to a Colored Bipartite Matching problem with
two types of colors: given a bipartite graph with red and blue edges, does there
exists a matching with (exactly) a certain number of red edges? Although the
complexity of this red-blue matching problem is open [32], we show that the op-
timal line-up problem can be solved in polynomial-time via Algorithm 1. We also
remark that with this probability set {α, β, 0} the problem still remains different
from Maximum Weight Matching, as we demonstrated via Example 1.

Theorem 1. Suppose that G = (T1∪T2, E, p) is a Team Order instance with
pi,j ∈ {α, β, 0} for all i, j ∈ {1, . . . , n}. Then an optimal line-up can be computed
in polynomial time.
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Proof. Suppose that M∗ denotes an optimal line-up. Let X denote a random
variable counting the number of games won by T1 corresponding to M∗. Then
X follows a Poisson Binomial (PB) distribution:

X ∼ PB(α, . . . , α︸ ︷︷ ︸
x

, β, . . . , β︸ ︷︷ ︸
y

, 0, . . . , 0︸ ︷︷ ︸
z

) =

PB(α, . . . , α︸ ︷︷ ︸
x

, β, . . . , β︸ ︷︷ ︸
y

),

where x, y and z are non-negative integers. Let us remove all 0-weight edges
from G and call the resulting graph G′. Then, M∗ is a matching of size x + y
in G′. Also, any maximum weight matching of size x+ y, say M , has at least x
α-weight edges. Notice that if M has at least x+1 α-weight edges, then Poisson
binomial random variable Y corresponding to M stochastically dominates X
contradicting the fact that M∗ is an optimal line-up. The argument also suggests
that searching through all matchings of various sizes will hit the optimal line-up.
Note that finding a maximum weight matching of a given size is polynomially
solvable. For example, the Hungarian algorithm computes a maximum weight
matching of a bipartite graph for each target size [20].

Similar approaches based on Maximum Weight Matching also lead to
efficient algorithms for two variants of Team Order. First, if the goal is to
decide whether T1 can beat T2 with non-zero probability, the problem can be
solved in polynomial time. Specifically, for an instance represented as a graph
G, we can consider the corresponding graph G′ in which edges with weight 0 are
removed. Then, T1 can beat T2 with non-zero probability if and only if G′ has a
matching of size ⌊n

2 ⌋+ 1. We state this result below.

Corollary 1. Given the line-up of T2, it can be decided in polynomial time
whether there exists a line-up of T1 that beats T2 with a non-zero probability.

Second, if the goal is to maximize the probability of winning all the matches,
the problem reduces to computing a weight maximizing matching, where the
weights are the logarithm of the non-zero winning probabilities.

Proposition 2. Given the line-up of T2, the line-up of T1 that maximizes the
probability of winning all the matches can be computed in polynomial time.

5 Approximation Algorithm for Team Order

As we have seen, in several cases finding a solution to Team Order is tractable.
However, even though it resembles Maximum Weight Matching, its exact
solutions are far more nuanced, which suggests its hardness. In this section, we
address the practical solvability of our problem by providing a PTAS for Team
Order. Assuming the input probabilities are bounded away from 0 and 1 by
any arbitrary constant ε > 0, the PTAS computes a solution to Team Order
whose winning probability is at most ε less than that of the optimal solution.
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5.1 High-level Ideas

For any perfect matching M = {e1, . . . , en} of G = (T1 ∪ T2, E, p), let XM be a
random variable counting the number of matches won by T1. One may observe
that XM follows a Poisson binomial distribution PB(pe1 , . . . , pen). Furthermore,
Team Order can be written as the following optimization problem.

min
M

Pr
[
XM ≤ ⌊n

2
⌋
]

subject to: M is a perfect matching of G = (T1 ∪ T2, E, p)

The main idea of our algorithm is as follows. First, we note that the number
of matchings M with Var [XM ] < ε−2 is bounded from above by a polynomial
in n, when ε is a constant. Hence, we can search over all such matchings to
find out the optimal one among them. For the other matchings M with a high

variance Var [XM ] ≥ ε−2, we use Φ

(
⌊n

2 ⌋−E[XM ]√
Var[XM ]

)
to approximate the objective

function, where Φ(x) = ( 1√
2π

)
∫ x

−∞ e
−y2

2 dy. Since XM is a Poisson binomial

random variable, it holds that if Var [XM ] ≥ ε−2, then∣∣∣∣∣Pr
[
XM ≤ ⌊n

2
⌋
]
− Φ

(
⌊n
2 ⌋ −E [XM ]√
Var [XM ]

)∣∣∣∣∣ ≤ ε.

Using the fact that Φ(x) is an increasing and continuous function in x, we get
the following optimization problem as an approximation to the original one.

min
M

⌊n
2 ⌋ −E [XM ]√
Var [XM ]

subject to: M is a perfect matching of G = (T1 ∪ T2, E, p)

The objective function is still non-linear though, but it can be characterized by
the mean and variance of XM . Using the fact that for every matching M we
have 0 ≤ Var [XM ] ≤ n

4 and E [XM ] ≤ n, we can discretize the two dimensional
space {(x, y) : 0 ≤ x ≤ n

4 and 0 ≤ y ≤ n} and design a search mechanism to
eventually hit a matching that is close enough to the optimal matching. The
search mechanism is based on an approximation algorithm solving a matching
problem that involves both budget and rewards, which we will discuss next.

5.2 Preliminary Results

We introduce necessary preliminary results for designing the PTAS. It has two
main ingredients. We apply a normal distribution estimation for a Poisson bi-
nomial distribution, and an approximation algorithm for the following Bud-
geted/Reward Matching problem. We assume that every pe /∈ {0, 1} is
bounded away from 0 and 1. Define δ = mine∈E,pe /∈{0,1} min{pe, 1 − pe}. Then,
we get that 1

δ = Θ(1).
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Approximation of Poisson Binomial Distribution. We use a normal distribution
estimation for a Poisson binomial distribution to approximate Pr

[
XM ≤ ⌊n

2 ⌋
]
,

which is based on the following result.

Theorem 2 ([29, Theorem 3.5]). Suppose that X ∼ PB(p1, . . . , pn) is a Poisson
binomial random variable. Then, for every 1 ≤ k ≤ n,∣∣∣∣∣Pr [X ≤ k]− Φ

(
k −E [X]√
Var [X]

)∣∣∣∣∣ ≤ 1√
Var [X]

,

where Φ(x) = ( 1√
2π

)
∫ x

−∞ e
−y2

2 dy.

An immediate application of Theorem 2 results in to the following corollary.

Corollary 2. Suppose that XM ∼ PB(pe1 , . . . , pen) is a Poisson binomial ran-
dom variable corresponding to a matching M = {e1, . . . , en} with Var [XM ] ≥
ε−2, for some ε > 0. Then,∣∣∣∣∣Pr

[
XM ≤ ⌊n

2
⌋
]
− Φ

(
⌊n
2 ⌋ −E [XM ]√
Var [XM ]

)∣∣∣∣∣ ≤ ε,

where Φ(x) = ( 1√
2π

)
∫ x

−∞ e
−y2

2 dy.

Budgeted Matching. We will use approximation algorithms for the following
Budgeted Matching problem as subroutines in our algorithm.

Budgeted Matching

Input: A bipartite graph G, weight w(e) and cost c(e) for each
edge e, and a budget B.

Question: Compute a perfect matching M of G that maximizes
w(M) :=

∑
e∈M w(e), subject to c(M) :=

∑
e∈M c(e) ≤

B.

Specifically, we are interested in the following weight and cost functions. For
every e ∈ E, we let w(e) = pe and c(e) = pe · (1− pe). Hence, for every matching
M , we have

w(M) = E [XM ] , and c(M) = Var [XM ] .

We will henceforth stick to the above weight and cost functions, unless otherwise
clarified. We use Ib(G,w, c,B) to denote an instance of Budgeted Match-
ing. For convenience, we can also define a “rewarded” variant of Budgeted
Matching, where we want the total cost to pass a threshold R, i.e., c(M) =∑

e∈M c(e) ≥ R, and we denote it by Ir(G,w, c,B). Since 0 ≤ c(e) < 1, we ob-
serve that Ir(G,w, c,B) is equivalent to Ib(G,w, c′, n−R), where c′(e) = 1−c(e)
for every e ∈ E. Berger et al. [8] designed a PTAS for the Budgeted Matching
problem. Using the same idea this PTAS is based on, we get the following.
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Lemma 1. Suppose that G = (T1 ∪ T2, E, p) is a Team Order instance,
w(e) = pe and c(e) = pe · (1− pe) for each e ∈ E. Then, there is a polynomial-
time algorithm to compute a feasible solution M to Ib(G,w, c,B) (respectively,
Ir(G,w, c,R)) such that w(M) ≥ opt − 2, where opt is the weight of optimal
solution of Ib(G,w, c,B) (respectively, Ir(G,w, c,R)).

Small / Large Variance Matchings. We partition the set of edges into edges
with fractional and binary weights; let F = {e ∈ E : pe /∈ {0, 1}} and F =
{e ∈ E : pe ∈ {0, 1}}. Fix an arbitrary constant ε ∈ (0, 1] and define M+(ε) ={
N ⊂ F : N is a minimum size matching with c(N) > ε−2

}
, and

M−(ε) =
{
N ⊂ F : N is a matching with c(N) ≤ ε−2

}
.

Clearly, for every perfect matching M on G, if c(M) > ε−2, then there exists
N ∈ M+(ε) such that M ∩ N = N . Similarly, if c(M) ≤ ε−2, there exists
N ∈ M−(ε) such that M ∩N = N .

For every matching N ⊂ E and every subset of edges E′ ⊆ E, let E′
N =

{e ∈ E′ : e ∩ N = ∅}, i.e., E′
N is the set of all edges in E′ that do not share

all endpoints with N . We now define two families of bipartite graphs as follows.
First, G+(ε) = {H = (T1 ∪ T2, N ∪ EN , p) : N ∈ M+(ε)}. Intuitively, we fix
the matching N and leave the unmatched part of the graph G free. Then, we
define G−(ε) = {H = (T1 ∪ T2, N ∪ FN , p) : N ∈ M−

ε }. This differs from G+(ε),
as we only consider 0/1-edges in the unmatched part of G. Note that for every
perfect matching M of G, if c(M) > ε−2, there is H ∈ G+(ε) such that M ⊂ H.
Similarly, if c(M) ≤ ε−2, then there is H ∈ G−(ε) such that M ⊂ H. Next, we
show that the size of these families of graphs is polynomially bounded.

Lemma 2. It holds that |G+(ε)| ≤ n4δ−1ε−2

and |G−(ε)| ≤ n4δ−1ε−2

.

5.3 The Algorithm

Now we discuss our approximation algorithm, Algorithm 2. Theorem 3 shows
that the algorithm produces an ε-approximate solution to Team Order in
polynomial time. The proof relies on Lemma 1 and Lemma 2.

Theorem 3. Algorithm 2 computes an ε-approximate solution to Team Order
and runs in time nO(δ−1ε−2), where δ = minpe /∈{0,1} mine∈E{pe, 1− pe}.

6 Winning Probability of a Maximum Weight Matching

In this section we investigate the winning probability of a maximum weight
matching. Our result provides a lower bound for the winning probability of any
maximum weight matching compared with that of the optimal line-up. In par-
ticular, the result shows that a sufficiently large/small maximum weight match-
ing performs almost as well as the optimal line-up. In what follows, we view
G = (T1 ∪ T2, E, p) as a weighted bipartite graph where for every e ∈ E, pe is
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ALGORITHM 2: ε-Approximation Algorithm

Input: a Team Order instance G = (T1 ∪ T2, E, p).
Output: an ε-approximate solution to Team Order.

ε← ε
4
;

for H ∈ G−(ε) do
M∗ ← a maximum weight perfect matching of H;
if M∗ exists and has a higher winning probability than M

(1)
ε (or M

(1)
ε = null)

then

M
(1)
ε ←M∗;

end

end

xi ← ε−2 + i
n
for each i = 0, . . . , n2

4
;

for H ∈ G+(ε) do

for i = 1, . . . , n2

4
do

M∗
i ← a solution to Ib(H,w, c, xi) such that w(M∗

i ) > opt− 2; // Lemma 1

if M∗
i exists and w(Mi) < ⌊n2 ⌋ then

M∗
i ← a solution to Ir(H,w, c, xi−1) such that w(M∗

i ) > opt− 2;
// Lemma 1

end

if M∗
i exists and

⌊n
2
⌋−w(M

(2)
ε )√

c(M
(2)
ε )

>
⌊n

2
⌋−w(M∗

i )√
c(M∗

i )
(or M

(2)
ε = null) then

M
(2)
ε ←M∗

i ;
end

end

end

return M
(1)
ε or M

(2)
ε whichever has the higher winning probability.

the weight of e. For every matching M , we use w(M) to denote its weight. In
addition, we assume that the size of G is sufficiently large.
Theorem 4. Let M∗ be a maximum weight matching and let O be an optimal
line-up. Then,

(1) If w(M∗) = n
2±f(n)

√
n, where f(n) ∈ [1,

√
n
2 ] is any non-decreasing function

in n, then Pr [T1wins under O] ≤ Pr [T1wins under M∗] + e−2f2(n).
(2) If w(M∗) ∈ [n2 −

√
n log n, n

2 +
√
n log n], then

Pr [T1wins under O]

≤Pr [T1wins under M∗] +
(4 + o(1))

n+ 1

∑
e∈M∗

(pe −
1

2
)2.

In the proof of Theorem 4 we rely on the following results.

Theorem 5 ([10]). Suppose that n is a given positive integer and let X ∼
PB(p1, . . . , pn) be a Poisson binomial random variable. Then, we have that

Pr [X ≥ E [X] + δ] ≤ e
−2δ2

n , and Pr [X ≤ E [X]− δ] ≤ e
−2δ2

n .
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Theorem 6 ([29, Theorem 2.1]). Let X ∼ PB(p1, . . . , pn) and let p̄ =
∑n

i=1
pi

n .
Define Y ∼ Bin(n, p̄). Then, (1) for every 0 ≤ k ≤ np̄ − 1, Pr [X ≤ k] ≤
Pr [Y ≤ k], and (2) for every np̄ ≤ k ≤ n, Pr [X ≤ k] ≥ Pr [Y ≤ k].

Theorem 7 ([1, Theorem 1]). Suppose that X ∼ PB(p1, . . . , pn), and p̄ =∑n
i=1 pi/n. Also, let Y ∼ Bin(n, p̄) is a binomial probability distribution. Then,

max
A⊆{0,...,n}

|Pr [X ∈ A]−Pr [Y ∈ A]| ≤ 1− p̄n − (1− p̄)n

(n+ 1)p̄(1− p̄)

n∑
i=1

(pi − p̄)2.

We prove the first and the second parts of the theorem separately next.

Part 1. When w(M∗) = n
2
± f(n)

√
n

Proof. Let M = {e1, . . . , en} be an arbitrary matching and XM be a ran-
dom variable that counts the number of games won by T1 under line-up M .
Then XM follows Poisson binomial distribution PB(pe1 , . . . , pen). , where M =
{e1, . . . , en}. Thus, E [XM ] = w(M). Let us first assume that w(M∗) = n

2 −
f(n)

√
n. Then, for every matching M , including the optimal line-up O, we have

w(M) ≤ w(M∗). Moreover, we have f(n)
√
n = n

2 − w(M∗) ≤ n
2 − w(M), and

Pr [T1 wins under M ] = Pr
[
XM ≥ ⌊n

2
⌋+ 1

]
≤ Pr

[
XM ≥ w(M) + (

n

2
− w(M))

]
= Pr

[
XM ≥ E [XM ] + f(n)

√
n
]
≤ e−2(f(n)

√
n)

2
n = e−2f(n)2 ,

using a concentration bound for Poisson binomial random variables (e.g., see
Theorem 5). Following that upper bound, if w(M∗) = n

2 − f(n)
√
n, then

Pr [T1 wins under O ] ≤ e−2f(n)2 ≤ Pr [T1 wins under M∗ ] + e−2f(n)2 . (1)

Next, we consider the case where w(M∗) = n
2 +f(n)

√
n. Define random variable

YM∗ that counts the number of games lost under M∗. Then YM∗ follows Poisson
binomial distribution PB(1− pe1 , . . . , 1− pen), where we let M∗ = {e1, . . . , en}.
One can check that E [YM∗ ] = n− w(M∗) = n

2 − f(n)
√
n.

Pr [T1 loses under M∗ ] = Pr
[
YM∗ ≥ ⌊n

2
⌋+ 1

]
≤ Pr

[
YM∗ ≥ E [YM∗ ] + (

n

2
−E [YM∗ ])

]
≤ e−2f(n)2 ,

where we have applied the same concentration bound as the previous case. Hence,

Pr [T1 wins under M∗ ] = 1−Pr [T1 loses under M∗ ] ≥ 1− e−2f(n)2 .

Thus,

Pr [T1 wins under O ] ≤ 1 ≤ Pr [T1 wins under M∗ ] + e−2f(n)2 (2)

Hence, combining (1) and (2) gives the first part of Theorem 4.
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Part 2. When w(M∗) ∈ [n
2
−

√
n logn, n

2
+

√
n logn]

Proof. Let us first consider the case where w(M∗) ∈ [n2 −
√
n log n, n

2 − 1).
Define random variables XO and XM∗ that count the number games won by
T1 under O and M∗, respectively. Moreover, define binomial random variables

ZO ∼ Bin(n, w(O)
n ) and ZM∗ ∼ Bin(n, w(M∗)

n ). Notice that w(O) ≤ w(M∗) and
hence ZM∗ stochastically dominates ZO (i.e, Pr

[
ZO ≤ n

2

]
≥ Pr

[
ZM∗ ≤ n

2

]
).

Since w(M∗) < n
2 , we apply the stochastic dominance between the Poisson and

binomial random variables (e.g., see Theorem 6 (2) ) and we have that

Pr [T1 loses under O] = Pr
[
XO ≤ n

2

]
≥ Pr

[
ZO ≤ n

2

]
≥ Pr

[
ZM∗ ≤ n

2

]
,

On the other hand, the optimal line-up O minimizes the losing probability of T1

and hence, by above inequality we have that

Pr [T1 loses under M∗]

= Pr
[
XM∗ ≤ n

2

]
≥ Pr [T1 loses under O] ≥ Pr

[
ZM∗ ≤ n

2

]
.

Applying the above inequality and Theorem 7 results in

Pr [T1 wins under O]−Pr [T1 wins under M∗]

= (1−Pr [T1 wins under M∗])− (1−Pr [T1 wins under O])

= Pr [T1 loses under M∗]−Pr [T1 loses under O]

≤ Pr
[
XM∗ ≤ n

2

]
−Pr

[
ZM∗ ≤ n

2

]
≤ 1− (p̄)n − (1− p̄)n

(n+ 1)(1− p̄)p̄

∑
e∈M∗

(pe − p̄)2,

where p̄ = w(M∗)
n . Since we have np̄ ∈ (n2 −

√
n log n, n

2 ), and n is an asymptoti-
cally large, we have p̄ ≈ 1

2 and thus

1− (p̄)n − (1− p̄)n

(n+ 1)(1− p̄)p̄

∑
e∈M∗

(pe − p̄)2 ≤ (4 + o(1))

n+ 1

∑
e∈M∗

(pe −
1

2
)2.

Therefore, if w(M∗) ∈ [n2 −
√
n log n, n

2 − 1), then

Pr [T1 wins under O] ≤ Pr [T1 wins under M∗] +
(4 + o(1))

n+ 1

∑
e∈M∗

(pe −
1

2
)2.

To derive the same upper bound for the case where w(M∗) ∈ [n2 ,
n
2+

√
n log n],

we define random variables that count the number of games lost by T1 and the
same technique for the above case follows.
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7 Conclusion

We proposed theTeam Order problem, which naturally captures several strate-
gic scenarios in information systems and team competitions. We have shown that
in the case in which the input probabilities are limited to three values (including
0) it is tractable and have shown that it is possible to efficiently compute a line-
up which is close to the optimal in terms of the probability of winning, which is
useful when the information about the players’ relative strength is limited (e.g.,
if it is only known when a player is “strong” or “weak” against an opponent).
One of our central results is a PTAS for the Team Order problem. We note
that while we focused on the probability of winning against more than a half of
opposing players, our results hold for any such threshold.

We conclude by highlighting some important directions for future work. First,
the complexity of solving Team Order exactly is open. We believe that this
is a challenging question that also has implications on the related problem of
Colored Bipartite Matching. It is known that it is NP-complete when d is a
variable [16]. However, the complexity of this problem is open if d is a constant
larger than 2, or if d = 2 but the graph is incomplete (which corresponds to
{α, β, 0}) [32]. This motivates further study between the connections of the two
discussed problems. It is also not known whether Team Order admits a fully
polynomial-time approximation scheme (FPTAS). Resolving this question would
be a strong improvement over our results.

While our result show the complexity of computing a best response to the
opponents line-up, it is natural to study the extension in which multiple teams
strategize. Regarding sport events, it would also be interesting to see if the results
change under other natural assumptions, such as all of the players having an
objective level of skill. For example, if a player i has better skill than a player
j, then i might always have a better probability of winning against any player
k than j’s probability of beating k.
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Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R.,
Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.) 50 Years of Integer Programming
1958-2008 - From the Early Years to the State-of-the-Art, pp. 29–47. Springer
(2010)

21 Li, J., Convertino, M.: Inferring ecosystem networks as information flows.
Scientific reports 11(1), 1–22 (2021)

22 Lisowski, G.: Strategic nominee selection in tournament solutions. In:
Baumeister, D., Rothe, J. (eds.) Multi-Agent Systems. pp. 239–256. Springer
International Publishing (2022)

23 Lisowski, G., Ramanujan, M., Turrini, P.: Equilibrium computation for
knockout tournaments played by groups. In: International Conference on
Autonomous Agents and Multiagent Systems. AAMAS (2022)

24 Lovász, L., Plummer, M.D.: Matching Theory. AMS Chelsea Publishing
(2009)

25 Mohamed, M.H., Khafagy, M.H., Ibrahim, M.H.: Recommender systems chal-
lenges and solutions survey. In: 2019 International Conference on Innovative
Trends in Computer Engineering (ITCE). pp. 149–155. IEEE (2019)

26 Roberson, B.: The colonel blotto game. Economic Theory 29(1), 1–24 (2006)
27 Shubik, M., Weber, R.J.: Systems Defense Games: Colonel Blotto, Command

and Control. Cowles Foundation Discussion Papers 489, Cowles Foundation
for Research in Economics, Yale University (1978)

28 Tang, P., Shoham, Y., Lin, F.: Team competition. In: Proceedings of the 8th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS). pp. 241–248. IFAAMAS (2009)

29 Tang, W., Tang, F.: The poisson binomial distribution – old & new (2019)
30 Vassilevska-Williams, V.: Knockout tournaments. In: Brandt, F., Conitzer,

V., Endriss, U., Lang, J., Procaccia, A.D. (eds.) Handbook of Computational
Social Choice, chap. 19. Cambridge University Press (2016)

31 Vu, T., Altman, A., Shoham, Y.: On the complexity of schedule control prob-
lems for knockout tournaments. AAMAS (2009)

32 Yi, T., Murty, K.G., Spera, C.: Matchings in colored bipartite networks.
Discrete Applied Mathematics 121(1-3), 261–277 (2002)


