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Abstract
In social choice settings with strict preferences,
random dictatorship rules were characterized by
Gibbard [1977] as the only randomized social
choice functions that satisfy strategyproofness and
ex post efficiency. In the more general domain
with indifferences, RSD (random serial dictator-
ship) rules are the well-known and perhaps only
known generalization of random dictatorship. We
present a new generalization of random dictatorship
for indifferences called Maximal Recursive (MR)
rule as an alternative to RSD. We show that MR is
polynomial-time computable, weakly strategyproof
with respect to stochastic dominance, and, in some
respects, outperforms RSD on efficiency.

1 Introduction
Social choice theory is one of the main pillars of microeco-
nomic theory which helps understand and devise methods to
aggregate preferences of multiple agents. Although the field
is sometimes viewed through a restricted lens of voting the-
ory, social choice theory is broad enough to include various
well-studied multi-agent settings including resource alloca-
tion, matchings, and coalition formation. The main setting in
social choice concerns a set of alternatives A, a set of agents
N, and each agent in N expresses preferences over A. Based
on the preferences of the agents, an alternative is chosen ac-
cording to some social choice function.

Two of the most fundamental criteria of social choice func-
tions are Pareto efficiency and strategyproofness. An out-
come is Pareto efficient if there is no other outcome that
all agents weakly prefer the latter outcome and at least one
agent strictly prefers. Strategyproofness captures the idea
that no agent should have an incentive to misreport his prefer-
ences to get a more preferred outcome. Pareto optimality has
been termed “the most important tool of normative economic
analysis” [Page 8, Moulin, 2003]. Similarly, seeking strate-
gyproof mechanisms in different domains is a long-standing
project within microeconomics. In this regard, a central result
is that no non-trivial deterministic resolute social choice func-
tion satisfying a weaker property than Pareto optimality is
strategyproof [Gibbard, 1973; Satterthwaite, 1975]. Here, we
use the standard notion of strategyproofness due to Gibbard,

i.e., there are no vNM utilities consistent with an agent’s pref-
erence profile such that when an agent misreports his prefer-
ences, he can increase his expected utility.

In this paper, we focus on randomized social choice func-
tions — also called social decision schemes [see e.g., Gib-
bard, 1977; Barberà, 1979b]. A social decision scheme (SDS)
is a function which takes a preference profile and returns a
lottery over A based on the preference profile. A probabilistic
approach to social choice has various virtues. Randomization
is one of the most common ways to regain ex ante fairness.
Consider two agents having opposite preferences over two
alternatives. Selecting an alternative with equal probability
seems to be the fair course of action. SDSs are especially
important when agents want to decide on sharing a divisi-
ble resource like time or space. In this case, the probability
which an alternative gets from the lottery can be interpreted
as the proportion of time or space the agents decide to al-
lot to some alternative [Example 3.6, Moulin, 2003]. So-
cial decision schemes have another motivation that the prob-
ability of each alternative can also be used as a suggestion
for the proportional representation of the alternative in repre-
sentative democracy or seat allocation of a parliament [Tul-
lock, 1967]. Non-deterministic voting rules have been used
in history, for example, in Ancient Greece and Renaissance
Italy [see, e.g., Stone, 2011; Walsh and Xia, 2012]. SDSs are
not only a topic of recent research in political science [see,
e.g., Stone, 2011] but also in computer science [e.g., Conitzer
and Sandholm, 2006; Procaccia, 2010]. In view of the neg-
ative strategyproofness results regarding deterministic social
choice functions, it is also natural to consider social decision
schemes.

In this paper, we propose a new social decision scheme
called MR (Maximal Recursive) which satisfies a number of
desirable properties pertaining to economic efficiency, strat-
egyproofness, and efficient computability. The rule is based
on using (generalized) plurality scores of the alternatives and
the idea of inclusion minimal subsets to recursively adjust the
probability weights of the alternatives. We will show that MR
is an interesting generalization of the well-studied random
dictatorship rule and has some favourable properties in com-
parison to RSD (random serial dictatorship) rule which is a
well-known generalization of random dictatorship.



2 Seeking efficiency and strategyproofness
For social decision schemes, ex post efficiency is a minimal
requirement of efficiency in the sense that no Pareto domi-
nated alternative gets non-zero probability. Gibbard [1977]
proved that for social choice settings where agents express
strict preferences over alternatives, there exist no ex post effi-
cient and strategyproof decision schemes other than RD (ran-
dom dictatorship).∗ In RD, an agent is chosen randomly as the
dictator who then has the privilege to select his unique maxi-
mally preferred alternative. If one requires anonymity so that
the rule does not depend on the names of the agents, then we
obtain the unique RD which gives equal probability to each
agent being the dictator. The resulting rule simply chooses
an alternative in proportion to its plurality score. This rule
has a number of merits. In political science, it is generally
referred to as lottery voting [see e.g., Saunders, 2010; Stone,
2011]. The probability which each alternative achieves is pro-
portional to the voting weight it gets in Tullock’s method for
representative democracy where alternatives are considered
representatives of the voters [Potthof and Brams, 1998].

Although much of work in the voting literature assumes
that agents have strict preferences over alternatives, it is nat-
ural to consider domains where agents may express indiffer-
ences among alternatives. The indifference could be because
an agent does not have enough information to decide which
alternative is better or it could simply be the case that the
agent values both alternatives equally. In fact, in many im-
portant domains of social choice such as resource allocation
and matching, ties are unavoidable because agents are indif-
ferent among all outcomes in which their allocation or match
is the same [e.g., Sönmez and Ünver, 2011; Bouveret and
Lang, 2008]. If agents express indifferences over (pure) al-
ternatives, then RD needs to be reformulated so that ex post
efficiency is satisfied. In the literature there is a well-known
generalization of RD called RSD (random serial dictatorship)
for the domain with indifferences. RSD uniformly random-
izes over n! lotteries — one for each permutation π over N.
A lottery for a particular π is computed as follows. Agent
π(1) chooses the set of maximally preferred alternatives from
A, π(2) chooses the maximally preferred alternatives from the
refined set and so on so until a final subset of A is left. Then,
the uniform lottery over the alternatives the final refined set is
chosen as the lottery corresponding to a given permutation π.
RSD is well-established in resource allocation and especially
in the restricted domain of social choice called the assign-
ment problem [see e.g., Svensson, 1994; Abdulkadiroğlu and
Sönmez, 1998; Bogomolnaia and Moulin, 2001].† For social
choice settings with indifferences, RSD is strategyproof in the
Gibbard sense and it is also ex post efficient.

∗SDSs that assign probabilities to alternatives in proportion to
their Borda or Copeland scores [see e.g., Barberà, 1979a; Conitzer
and Sandholm, 2006; Procaccia, 2010] are strategyproof but they are
not ex post efficient.

†In his original paper, Gibbard [1977] already gave a partial de-
scription of RSD in which a dictator chooses his maximally pre-
ferred alternatives and then his ‘henchman’ refined the set further.
In the resource allocation literature, RSD is also referred to as RP
(random priority) [see e.g., Bogomolnaia and Moulin, 2001].

Despite the central position of RSD as the natural extension
of RD to the general domain, RSD is not without some criti-
cism. Critiques of RSD include efficiency losses [Aziz et al.,
2013b; Bogomolnaia and Moulin, 2001] and computational
overhead. Although RSD is a well-established mechanism,
Bogomolnaia and Moulin [2001] demonstrated that RSD suf-
fers from unambiguous efficiency losses even in the restricted
social choice domain of assignment problems. In particular,
it does not satisfy SD-efficiency (stochastic dominance effi-
ciency) — an efficiency notion that is stronger than ex post
efficiency. Although RSD can be used efficiently to randomly
return a single alternative, it is computationally demanding to
analyze since computing exactly the probability of an alterna-
tive being chosen requires enumerating |N |! permutations: no
polynomial-time algorithm is known. In fact, recently, com-
puting the lottery returned by RSD has been shown to be #P-
complete to compute [Aziz et al., 2013a] which implies that
there exists no polynomial-time algorithm unless a statement
even stronger than P=NP holds. In light of these issues, we
are motivated to find some other generalization of RD that is
computationally efficient to handle and fares better than RSD
in terms of efficiency. We present a new generalization of
random dictatorship for indifferences, namely the Maximal
Recursive (MR) rule.

In order to analyze MR, we undertake a more nuanced in-
vestigation of social decision schemes by considering strate-
gyproofness (abbreviated as SP) and efficiency with respect
to different lottery extensions just like in [Aziz et al., 2013b;
Cho, 2012]. A lottery extension specifies how preferences
over alternatives are extended to preferences over lotteries.
We consider three lottery extensions: SD (stochastic domi-
nance), DL (downward lexicographic) and DL1 (downward
lexicographic one). All of these lottery extensions define re-
lations on lotteries. One lottery stochastically dominates an-
other if for all utility representations consistent with the ordi-
nal preferences, the former yields as much utility as the lat-
ter [see, e.g., Cho, 2012]. As the name suggests DL is based
on lexicographic comparisons. DL is a refinement of the SD
lottery extension. DL is also a refinement of DL1—a lottery
extension in which lotteries are compared only with respect
to the probability assigned to the maximally preferred alter-
natives. DL1 is a natural preference relation and models situa-
tions in which an agents wants to maximize the probability of
his most preferred alternatives. Maximizing the probability of
the most preferred alternative has been examined before [see
e.g., Conitzer et al., 2007].

Our main contribution is proposing the Maximal Recur-
sive (MR) Rule and showing that MR satisfies various desir-
able axiomatic properties. MR is computationally-efficient
and ex post efficient. In fact for many instances, it returns
an SD-efficient lottery even though RSD returns a lottery
that is not SD-efficient. On the other hand, MR satisfies
DL-strategyproofness—a weaker notion of strategyproofness
than the one satisfied by RSD. MR applies to any setting in
which agents have preferences over outcomes and these pref-
erences need to be aggregated into a probability distribution
over the outcomes. Our results are summarized in the follow-
ing central theorem.



Theorem 1 MR is
(i) single-valued, anonymous, neutral and monotonic;

(ii) computable in polynomial time;
(iii) equivalent to RD for strict preferences and hence both

SD-SP and SD-efficient for strict preferences;
(iv) DL-SP (and hence weak SD-SP) but not SD-SP;
(v) ex post efficient;

(vi) SD-SP for dichotomous preferences;
(vii) SD-efficient for some instances for which RSD is not

SD-efficient.

The statement is proved in a series of propositions. Before
we proceed, the main concepts are defined and then MR is
presented.

3 Preliminaries
Social choice and lotteries. Consider the social choice set-
ting in which there is set of agents N = {1, . . . , n}, a set
of alternatives A = {a1, . . . , am} and a preference profile
R = (R1, . . . ,Rn) such that each Ri is a complete and transi-
tive relation over A. We have a Ri b denote that agent i values
alternative a at least as much as alternative b and write Pi for
the strict part of Ri, that is, a Pi b if a Ri b but not b Ri a. Ii
denotes i’s indifference relation, that is, a Ii b if both a Ri b
and b Ri a. Whenever all Ri are antisymmetric, we say that
agents have strict preferences. For any S ⊆ A, we will de-
note by maxRi (S ) the alternatives in S that are maximally
preferred by i. The relation Ri results in equivalence classes
E1

i , E
2
i , . . . , E

ki
i for some ki such that a Pi a′ for a ∈ El

i and
a′ ∈ El′

i for l < l′. Often, we will use equivalent classes to
represent the preference relation of an agent as a preference
list

i : E1
i , E

2
i , . . . , E

ki
i .

For example, we will denote the preference a Ii b Pi c by
following list

i : {a, b}, {c}.
An agent’s preferences are dichotomous, if he partitions

the alternatives into two equivalence classes E1
i and E2

i , i.e.,
ki = 2. An agent’s preferences are strict if he is not indifferent
between any alternatives, i.e., ki = m.

Let ∆(A) denote the set of all lotteries (or probability dis-
tributions) over A. The support of a lottery p ∈ ∆(A), denoted
by supp(p), is the set of all alternatives to which p assigns a
positive probability, i.e., supp(p) = {x ∈ A | p(x) > 0}. We
will represent a lottery in the following way

[a1 : p1, . . . , am : pm],

where p j is the probability of alternative a j for j ∈ {1, . . . ,m}.

Lottery extensions. In order to reason about the outcomes
of social decision schemes, we need to reason about how how
agents compare lotteries. A lottery extension maps prefer-
ences over alternatives to (possibly incomplete) preferences
over lotteries. Given Ri over A, one can extend Ri to Re

i over
∆(A) where Re

i is a relation between lotteries based on lottery

extension e. We now define particular lottery extensions in-
cluding the standard extensions SD (stochastic dominance)
and DL (downward lexicographic) [see e.g., Bogomolnaia
and Moulin, 2001; Schulman and Vazirani, 2012; Abdulka-
diroğlu and Sönmez, 2003; Cho, 2012]. We also consider an
extension DL1 which is coarser than DL. For a lottery p and
A′ ⊆ A, we will denote

∑
a∈A′ p(a) by p(A′). Consider two lot-

teries p, q ∈ ∆(A). Then, the SD lottery extension is defined
as follows.

p RS D
i q iff

l∑
j=1

p(E j
i ) ≥

l∑
j=1

q(E j
i ) for all l ∈ {1, . . . , ki}.

Next we define the DL lottery extension. Let l ∈ {1, . . . ki}

be the smallest integer such that p(El
i) , q(El

i). Then,

p PDL
i q iff p(E j

i ) > q(E j
i ).

If there exists no integer l ∈ {1, . . . k} such that p(El
i) , q(El

i)
then p IDL

i q.
Finally, we define the lottery extension DL1.

p RDL1

i q iff p(E1
i ) ≥ q(E1

i ).

It is clear that p RS D
i q =⇒ p RDL

i q i.e., DL is a refinement
of SD. Also DL is a refinement of DL1.

Fact 1 RS D ⊂ RDL. Also, RDL1
⊂ RDL.

To clarify the differences between the three lottery exten-
sions, we provide the following example.

Example 2 For A = {a, b, c, d}, consider lotteries p and q
over A: p = [a : 0.4, b : 0.1, c : 0.5, d : 0] and q = [a :
0.4, b : 0.3, c : 0, d : 0.3]. Then for an agent i with preferences
a Pi b Pi c Pi d, his preferences between the lotteries p and
q are as follows: q Pi

DL p; p Ii
DL1

q; and ¬(p Pi
S D q) and

¬(q Pi
S D p).

Efficiency and strategyproofness based on lottery exten-
sions. Based on a lottery extension, one can define an ap-
propriate notion of efficiency and strategyproofness. For a
lottery extension e, lottery p is e-efficient if there exists no
lottery q such that q Re

i p for all i ∈ N and q Pe
i p for some

i ∈ N. An SDS which always returns an e-efficient lottery is
termed e-efficient. A standard efficiency notion that cannot
be phrased in terms of lottery extensions is ex post efficiency
also known as Pareto-optimality. A lottery is ex post efficient
if it is a lottery over Pareto optimal alternatives.

Fact 2 DL-efficiency =⇒ SD-efficiency =⇒ ex post ef-
ficiency. Also SD-efficiency =⇒ weak SD-efficiency, and
DL-efficiency =⇒ DL1-efficiency.

An SDS ϕ is weak e-SP if for every preference profile R,
there exists no R′i for some agent i ∈ N such that ϕ(R′i ,R−i) Pe

i
ϕ(Ri,R−i). An SDS ϕ is e-SP if for every preference profile
R, and every R′i for all i ∈ N, ϕ(Ri,R−i) Re

i ϕ(R′i ,R−i). For
a complete lottery extension such as DL or DL1, SP and the
weak notion of SP coincide. This is not the case for SD for
which SD-SP is strictly stronger than weak SD-SP.



Fact 3 SD-SP =⇒ DL-SP =⇒ weak SD-SP. Also DL-SP
=⇒ DL1-SP.

Note that SD-SP is equivalent to strategyproofness in the
Gibbard sense.

We also present a formal definition of RSD. Let ΠN be the
set of permutations over N and π(i) be the i-th agent in per-
mutation π ∈ ΠN . Then,

RSD(N, A,R) =
∑
π∈ΠN

1
n!
δuniform(Prio(N, A,R, π))

where

Prio(N, A,R, π) = max
Rπ(n)

(max
Rπ(n−1)

(· · · (max
Rπ(1)

(A)) · · · )),

δuniform(B) is the uniform lottery over the given set B, and
maxRi (A

′) is the set of alternatives in A′ maximally preferred
by agent i.

4 Maximal Recursive Rule
We now present the Maximal Recursive (MR) rule. MR relies
on the concept of IMS (inclusion minimal subsets). For S ⊆
A, let A1, . . . , Am′ be subsets of S . Let I(A1, . . . , Am′ ) be the
set of non-empty intersection of elements of some subset of
{A1, . . . , Am′ }.

I(A1, . . . , Am′ )

={X ∈ 2A \ ∅ : X =
⋂

A j∈A′
A j for some A′ ⊆ {A1, . . . , Am′ }}.

Then, the inclusion minimal subsets of S ⊆ A with respect
to (A1, . . . , Am′ ) are defined as follows.

IMS (A1, . . . , Am′ )

={X ∈ I(A1, . . . , Am′ ) : @X′ ∈ I(A1, . . . , Am′ )
s.t. X′ ⊂ X}.

Example 3 Consider the sets A1 = {a, b, c, d}, A2 = {a, b},
A3 = {d, e, f }, A4 = { f }. Then, IMS (A1, . . . , A4) =
{{a, b}, {d}, { f }}.

Inclusion minimal subsets can be computed efficiently.

Lemma 1 The set IMS (A1, . . . , Am′ ) can be computed in
polynomial time.

Proof sketch: We first identify alternatives that are domi-
nated. We say that a ∈ A is dominated by b ∈ A if for each
A j such that a ∈ A j, it holds that b ∈ A j and there exists some
A j such that a < A j but b ∈ A j. We put all the alternatives not
dominated in set S . We now partition S as follows. If there
exist no A j such that only one of a or b is in A j then we con-
nect a and b. By doing this we can partition S into connected
components. Each component corresponds to a member of
IMS (A1, . . . , Am′ ). �

Input: (A,N,R)
Call MR-subroutine(A, 1, (A,N,R)) to compute p(a) for
each a ∈ A.
return [a1 : p(a1), . . . , am : p(am)]

Algorithm 1: MR

Input: (S , v, (A,N,R))
1 if maxRi (S ) = S for all i ∈ N then
2 p(a) = v/|S | for all a ∈ S
3 else
4 T (i, S ,R) ←− {a : a ∈ arg maxa∈maxRi (S ) s1(a, S ,R)} for

all i ∈ N
5 t(i, a,R) ←− 1/|T (i, S ,R)| if a ∈ T (i, S ,R) & zero oth-

erwise for all i ∈ N & a ∈ S
6 γ(a)←−

∑
i∈N t(i, a,R) for all a ∈ S

7 p(a,R)←− v(γ(a,R))/|N | for all a ∈ S
8 {S 1, . . . , S k} ←− IMS (maxR1 (S ), . . . ,maxRn (S ))
9 for each S j ∈ {S 1, . . . , S k} do

10 return MR-subroutine(S j, p(S j), (A,N,R))
11 end for
12 end if

Algorithm 2: MR-subroutine

Now that we have defined IMS , we are ready to present
MR. MR is summarized as Algorithm 1 which calls a sub-
routine (Algorithm 2) and computes a lottery p such that p(a)
is the probability of a ∈ A. We will denote by s1(a, S ,R)
the generalized plurality score of a according to R when the
alternative set and the preference profile is restricted to S .

s1(a, S ,R) = |{i ∈ N : a ∈ max
Ri

(S )}|.

In MR, the probability weight of a set of alternatives is
recursively redistributed over disjoint subsets of the alterna-
tives. MR starts with the set of all alternatives for which
the probability weight of one is to be redistributed. In
MR-subroutine, S is a subset of A, and v is the total probabil-
ity weight of S that is to be redistributed among the elements
of S . In the first call of MR-subroutine, S = A and v = 1.
Each agent i selects T (i, S ,R) the set of his most preferred
alternatives from within the set S with the maximum gener-
alized plurality score with respect to R. Each i ∈ N uniformly
divides a total score of one among some of the most favoured
alternatives in S : each i ∈ N gives 1/|T (i, S ,R)| to each el-
ement of T (i, S ,R). Based on these contributions of scores,
each alternative a gets a total score γ(a,R) which is then nor-
malized by the sum of the total scores of all alternatives. The
resultant fraction γ(a,R)/

∑
a j∈A γ(a j,R) = γ(a,R)/|N | is the

fraction of probability weight v which alternative a gets. The
intersections of T (i, S ,R) for each i ∈ N result in minimal
intersecting sets each with a total weight equaling the sum
of the weights of alternatives in the intersecting sets. The
process is recursively repeated until the maximal elements of
each set for each agent equal the set itself.

The algorithm gives rise to a recursion tree in which the
root is labelled by A and is at depth zero. Each node is labeled
by a subset of A. At any depth of the tree, the sets of the nodes
of the tree are disjoint. Consider the leaves L1, . . . , Lk. Then



{a,b,c,d,e}

{a (5/18), b (5/18)}

{a (10/18)}

{c (8/18)}

Depth 0

Depth 1

Depth 2

1 : {a, b, c, d}, {e} 2 : {a, b}, {c, d}, {e}
3 : {c, e}, {a}, {d}, {b}

Figure 1: Running MR on the preference profile above. The
lottery returned is [a : 10/18, b : 0, c : 8/18]. RSD would
have returned [a : 1/2, b : 0, c : 1/2].

⋃
i∈{1,...,k} Li = supp(p). Also note that a ∈ S for some node

labeled S , then a is in each ancestor of S . Consider any node
labeled S , and consider a child S ′ of S such that a, a′ ∈ S ′.
Then, for each agent i, a ∈ maxRi (S ) ⇐⇒ a′ ∈ maxRi (S ).

Note that we start the whole set A at depth 0. At depth k,
the amount of weight put on the first k equivalence classes is
fully set for each agent i.e., it will not change.

Proposition 1 MR is single-valued and runs in polynomial
time.

In each depth of the recursion tree, a lottery is maintained.
In each depth there are at most |A| function calls to the MR-
subroutine, each taking time O(|A|3n). The depth of the re-
cursion tree can be at most |A|. Hence the total time taken is
polynomial in the input. A unique lottery is returned in the
end.

It can easily be seen that MR does not depend on the iden-
tities of the agents and alternatives but only on the preference
profile. MR is also monotonic i.e., if an alternative is rein-
forced, then its probability cannot decrease.

Proposition 2 MR is anonymous, neutral, and monotonic.

Just like RSD, MR is a proper extension of the anonymous
random dictator rule.

Proposition 3 MR is an RD rule for strict preferences and is
therefore SD-SP and SD-efficient for strict preferences.

5 Efficiency
Ex post efficiency is a minimal efficiency requirement for so-
cial decision schemes. We show that MR is ex post efficient.

Proposition 4 MR is ex post efficient.

Proof Sketch: Let p be the lottery returned by MR. Consider
an alternative a such that a is Pareto dominated by b. Without
loss of generality, assume that b is Pareto optimal. We will
show that a gets zero probability. If a is a maximally pre-
ferred alternative for some agent, then so is b. If a ∈ S 1 for
some S 1 ∈ {S 1, . . . , S l} for the sets in depth one, then b ∈ S 1.

By the same argument, if a ∈ S k ⊂ S k−1 ⊂ · · · ⊂ S 1, then
b ∈ S k ⊂ S k−1 ⊂ · · · ⊂ S 1 where S k is the set containing a
and b at recursion depth k. Finally, since b Pareto dominates
a, there exists some i ∈ N such that b Pi a. Hence, there
exists some k′ < |A| such that a < S k′ ⊂ S k′−1 ⊂ · · · ⊂ S 1

and b ∈ S k′ ⊂ S k′−1 ⊂ · · · ⊂ S 1. Therefore a Pareto domi-
nated alternative gets probability zero. Hence MR is ex post
efficient. �

On a number of instances, MR fares much better than RSD
from the point of view of economic efficiency.

Proposition 5 There exist instances for which the MR lottery
is SD-efficient but the RSD lottery is neither SD-efficient nor
DL1-efficient.

Proof: Consider the following preference profile presented
first in [Aziz et al., 2013b].

1 : {a, c}, {b}, {d} 2 : {b, d}, {a}, {c}
3 : {a}, {d}, {b, c} 4 : {b}, {c}, {a, d}

The outcome of RSD is [a : 5/12, b : 5/12, c : 1/12, d : 1/12]
which is SD dominated by the MR outcome [a : 6/12, b :
6/12, c : 0, d : 0]. �

Proposition 6 There exist instances with indifferences for
which the MR lottery is the same as the RSD lottery and the
lottery is not SD-efficient.

Proof: Consider the following preference profile.

1 : {a1}, {a}, {d}, {b, c} 2 : {a1}, {b}, {c}, {a, d}
3 : {a, c}, {a1, b, d} 4 : {b, d}, {a1, a, c}

Then, the MR outcome as well as the RSD outcome is [a1 :
1/2, a : 1/8, b : 1/8, c : 1/8, d : 1/8]. The outcome is not
SD-efficient since it is SD dominated by [a1 : 1/2, a : 1/4, b :
1/4. �

6 Strategyproofness
In this section we examine the strategyproofness aspects of
MR. We show that MR is DL-SP and hence weak SD-SP.

Proposition 7 MR is DL-SP.

Proof Sketch: We show that at each depth in the recursion
tree starting from depth 0, and for each set S ⊆ A cor-
responding to the node in the recursion tree, each agent
i ∈ N has no incentive other than to express maxRi (S ) as
the maximally preferred alternatives in S . We will denote
by MR(A′, (Ri,R−i)) the sum of probability weight of alterna-
tives in A′ with respect to the lottery returned by MR on pref-
erence profile (Ri,R−i). Note that in MR, for any set S ⊆ A
and any i ∈ N, once the probability weight for maxRi (S ) has
been fixed, it cannot decrease.

Let us assume that agent i expresses preferences
R′i , Ri. We show that MR(maxRi (S ), (R′′i ,R−i)) ≥

MR(maxRi (S ), (R′i ,R−i)) if R′′i is such that maxR′′i (S ) =
maxR′i (S ) ∪ maxRi (S ) for all S ⊆ A or if R′′i is such that
maxR′′i (S ) = maxR′i (S )∩maxRi (S ) for all S ⊆ A. Note that the



only sets S that matter are the IMS sets encountered during
the MR algorithm.

Consider the preference profile R′′i such that maxR′′i (S ) =
maxR′i (S ) ∪ maxRi (S ) for all S ⊆ A. For all a ∈ maxRi (S ),
if a ∈ maxR′i (S ), then a ∈ maxR′′i (S ). For any agent
j , i, if a ∈ T ( j, S , (R′i ,R−i)), then it must be the case
that a ∈ T ( j, S , (R′′i ,R−i)). Thus,

∑
a∈maxRi (S ) t( j, a, (R′i ,R−i) ≤∑

a∈maxRi (S ) t( j, a, (R′′i ,R−i) for all j ∈ N. Hence,
MR(maxRi (S ), (R′′i ,R−i)) ≥ MR(maxRi (S ), (R′i ,R−i)).

Consider the preference profile R′′i such that
maxR′′i (S ) = maxR′i (S ) ∩ maxRi (S ) for all S ⊆ A. Thus,∑

a∈maxRi (S ) t( j, a, (R′i ,R−i) ≤
∑

a∈maxRi (S ) t( j, a, (R′′i ,R−i)
for all j ∈ N. Hence, MR(maxRi (S ), (R′′i ,R−i)) ≥

MR(maxRi (S ), (R′i ,R−i)).
Since DL preferences are strict and complete, any prefer-

ence R′i that yields a different lottery will be strictly less pre-
ferred by agent i. �

Corollary 1 MR is weak SD-SP and weak DL1-SP.

Corollary 2 MR is SD-SP for dichotomous preferences.

In other words, an agent cannot misreport his preferences
to get an unambiguous improvement in expected utility or to
maximize the probability of his most preferred alternatives.

Whereas MR is DL-SP, it is not SD-SP like RSD.

Proposition 8 MR is not SD-SP.

Proof: Consider the following preference profile.

1 : {a1}, {a2}, {a3} 2 : {a1}, {a2}, {a3}

3 : {a2, a3}, {a1} 4 : {a2, a3}, {a1}

5 : {a3}, {a2}, {a1}

Then MR returns the lottery [a1 : 2/5, a2 : 0/5, a3 : 3/5].
If agent 1 submits the preferences R′1 : {a1, a2}, {a3}, then, the
MR lottery is [a1 : 1/5, a2 : 2/5, a3 : 2/5]. Therefore it is not
the case that MR(R1,R−1) RS D

1 MR(R′1,R−1). �

7 Discussion

RSD MR
Properties

SD-SP & SD-efficient for strict preferences + +

SD-efficient - -
Ex post efficient + +

SD-SP + -
DL-SP + +
Weak SD-SP + +

Polynomial-time algorithm −a +
to compute the lottery

Monotonic, anonymous, and neutral + +

a #P-complete

Table 1: Properties satisfied by RSD and MR.

We presented a new social decision scheme called MR as
an alternative to RSD. We showed that MR has both compu-
tational and efficiency advantages over RSD.

MR also fares well against other social decision schemes.
Recently strict maximal lotteries [Kreweras, 1965; Fishburn,
1984] have been proposed as an alternative to RSD [Aziz et
al., 2013b]. However, strict maximal lotteries are not even
weak SD-SP for strict preferences and they are P-complete
to compute (hence at least as computationally hard as linear
programming). On the other hand, maximal lotteries are at-
tractive from an efficiency point of view since they are SD-
efficient. It will be interesting to see whether there is a way to
modify MR so that it maintains its strategic properties but ad-
ditionally satisfies SD-efficiency. Just like MR, another weak
SD-SP rule is Condorcet which gives probability 1 to a Con-
dorcet winner or else gives uniform probability to all the al-
ternatives [Theorem 1, Postlewaite and Schmeidler, 1986].
However the Condorcet social decision scheme is not ex post
efficient.

Some interesting questions still remain to be answered. For
example, does there exist an anonymous non-RD rule that is
both weak SD-SP and ex post efficient? Does there exist an
anonymous rule that is both DL-efficient and DL-SP? Finally,
most of the research on strategyproofness and efficiency con-
cepts based on lottery extensions has been conducted in the
restricted domain of assignments problems. The same frame-
work, when applied to the general domain of social choice,
will open up new research frontiers.
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A. Abdulkadiroğlu and T. Sönmez. Ordinal efficiency and
dominated sets of assignments. Journal of Economic The-
ory, 112(1):157–172, 2003.

H. Aziz, F. Brandt, and M. Brill. The computational com-
plexity of random serial dictatorship. Technical report,
http://arxiv.org/abs/1304.3169, 2013.

H. Aziz, F. Brandt, and M. Brill. On the tradeoff between
economic efficiency and strategyproofness in randomized
social choice. In Proc. of 12th AAMAS Conference, pages
455–462. IFAAMAS, 2013.
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