L)

Check for
updates

Computational Complexity of k-stable Matchings

HARIS AZIZ, UNSW Sydney, Sydney, Australia
GERGELY CSA_] |, HUN-REN Centre for Economic and Regional Studies, Budapest, Hungary
AGNES CSEH, Universitit Bayreuth, Bayreuth, Germany

We study deviations by a group of agents in the three main types of matching markets: the house alloca-
tion, the marriage, and the roommates models. For a given instance, we call a matching k-stable if no other
matching exists that is more beneficial to at least k out of the n agents. The concept generalizes the recently
studied majority stability [57]. We prove that whereas the verification of k-stability for a given matching is
polynomial-time solvable in all three models, the complexity of deciding whether a k-stable matching exists
depends on % and is characteristic of each model.

CCS Concepts: « Mathematics of computing — Matchings and factors; « Theory of computation —
Algorithmic game theory;

Additional Key Words and Phrases: Stable matching, popular matching, majority stability, algorithm,
complexity

ACM Reference Format:
Haris Aziz, Gergely Csaji, and Agnes Cseh. 2025. Computational Complexity of k-stable Matchings. ACM
Trans. Econ. Comput. 13, 1, Article 5 (February 2025), 25 pages. https://doi.org/10.1145/3708507

1 Introduction

In matchings under preferences, agents seek to be matched among themselves or to objects. Each
agent has a preference list of their possible partners. When an agent is asked to vote between two
offered matchings, they vote for the one that allocates the more desirable partner to them. The
goal of the mechanism designer is to compute a matching that guarantees some type of optimality.
A rich literature has emerged from various combinations of input types and optimality conditions.
In our article, we study three classic input types together with a new, flexible optimality condition
that incorporates already defined notions as well.
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5:2 H. Aziz et al.

Table 1. Pointers to the Seminal Articles in Each Typical Combination of the
Studied Models and Optimality Concepts

Model | Pareto optimality Stability Popularity
HA | Abraham et al. [1] Abraham et al. [2]
SM Gale and Shapley [29] Gardenfors [30]
SR Irving [38] Faenza et al. [25], Gupta et al. [32]

Input types. Our three input types differ in the structure of the underlying graph and the exis-
tence of objects as follows.

— House allocation model (HA). One side of a two-sided matching instance consists of agents
who have strictly ordered, but possibly incomplete preferences and cast votes, while the
other side is formed by objects with no preferences or votes.

— Marriage model (sm). Vertices on both sides of a two-sided matching instance are agents, who
all have strictly ordered, but possibly incomplete preferences and cast votes.

— Roommates model (sr). The matching instance is not necessarily two-sided, all vertices are
agents, who have strictly ordered, but possibly incomplete preferences and cast votes.

Optimality condition. For a given k, we say that a matching M is k-stable if there is no other
matching M’ that at least k agents prefer to M. Notice that this notion is highly restrictive, as
the number of agents who prefer M to M’ is not taken into account. Some special cases of k
express very intuitive notions. The well-known notion of weak Pareto optimality is equivalent to
n-stability; majority stability [57] is equivalent to "T“ -stability, and finally, 1-stability asks whether
there is a matching that assigns each agent their most preferred partner.

Structure of the article and techniques. We summarize relevant known results in Section 2 and lay
the formal foundations of our investigation in Section 3. We start by describing polynomial-time
algorithms for the case when k is a fixed constant in Section 4. Roughly speaking, these rely on
the fact that we can guess the minimum number k” < k, such that there is a k’-stable matching
and then guess k’ agents who can improve at the same time in a k’-stable matching. We then turn
to our complexity results for k = cn values in the house allocation model in Section 5 and provide
analogous proofs for the marriage and roommates models in Section 6. In the marriage model, we
show that a majority stable matching always exists (a popular matching suffices), but this is the
best we can do, as for ¢ < % the problem becomes NP-hard. For the roommates model, as stable
matchings may fail to exist, we extend the NP-hardness to ¢ < £ and using stable partitions (or
stable half-matchings) we give an algorithm for ¢ > %. For special preference domains, we give
additional algorithms. We conclude in Section 7. Our proofs rely on tools from matching theory
such as the famous Gallai-Edmonds decomposition, stable partitions, or scaling an instance with
carefully designed gadgets.

2 Related Work

Matchings under preferences have been actively researched by both Economists and Computer
Scientists [45, 51]. In this section, we highlight known results on the most closely related optimality
concepts from the field. Table 1 summarizes the typical combinations of the studied models and
optimality concepts.

2.1 Pareto Optimal Matchings

Pareto optimality is a desirable condition, most typically studied in the house allocation model. It
is often combined with other criteria, such as lower and upper quotas. A matching M is Pareto
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optimal if there is no matching M’, in which no agent is matched to an object they consider worse,
while at least one agent is matched to an object they consider better than their object in M. A
much less restrictive requirement implies weak Pareto optimality: M is weakly Pareto optimal if
no matching M’ exists that is preferred by all agents. This notion is equivalent to n-stability. The
crucial difference is that Pareto optimality considers all agents, while k-stability (and thus weak
Pareto optimality) only the ones who improve.

Weak Pareto optimality is mainly used in continuous and multi-objective optimization [23] and
in economic theory [26, 59]. Pareto optimality is one of the most studied concepts in coalition
formation and hedonic games [3, 7, 13, 24], and has also been defined in the context of various
matching markets [4, 9, 14, 15]. As shown by Abraham et al. [1], in the house allocation model, a
maximum size Pareto optimal matching can be found in polynomial time.

2.2 Stable Matchings

Possibly the most studied optimality notion for the marriage and roommates models is stability.
A matching is stable if it is not blocked by any edge, that is, no pair of agents exists who are mu-
tually inclined to abandon their partners for each other. The existence of stable matchings was
shown in the seminal article of Gale and Shapley [29] for the marriage model. Later, Irving [38]
gave a polynomial-time algorithm to decide whether a given roommates instance admits a stable
matching. Tan [55] improved Irving’s algorithm by providing an algorithm that always finds a
so-called stable partition, which coincides with a stable matching if any exists. Stability was later
extended to various other input settings in order to suit the growing number of applications such
as employer matching markets [52], university admission decisions [6, 12], campus housing match-
ings [16, 49], and bandwidth matching [28]. The main difference between stability and k-stability
is that, while blocking is a local property—two adjacent agents alone can block the matching—,
k-stability is a global one, as it does not matter which k agents improve. For this reason, one may
even argue that k-popularity would be a more suitable name. Our choice of words originates from
the notion of majority stability of Thakur [57].

2.3 Popular Matchings

Popular matchings translate the simple majority voting rule into the world of matchings under
preferences. Given two matchings M and M’, matching M is more popular than M’ if the number of
vertices preferring M to M’ is larger than the number of vertices preferring M’ to M. A matching M
is popular in an instance if there is no matching M’ that is more popular than M.

The concept was first introduced by Gardenfors [30] for the marriage model and then studied
by Abraham et al. [2] in the house allocation model. Polynomial-time algorithms to find a popular
matching were given in both models. In the marriage model, it was already noticed by Gardenfors
that all stable matchings are popular, which implies that in this model, popular matchings always
exist. In fact, stable matchings are the smallest size popular matchings, as shown by Bir6 et al.
[10], while maximum size popular matchings can be found in polynomial time as well [35, 39].
Only recently, Faenza et al. [25] and Gupta et al. [32] resolved the long-standing [10, 18, 34, 36,
45] open problem on the complexity of deciding whether a popular matching exists in a popular
roommates instance and showed that the problem is NP-complete. This hardness extends to graphs
with complete preference lists [20].

Besides the three matching models, popularity has also been defined for spanning trees [21],
permutations [43, 58], the ordinal group activity selection problem [22], and very recently, for
branchings [41]. Matchings nevertheless constitute the most actively researched area of the ma-
jority voting rule outside of the usual voting scenarios. Similar to Pareto optimality, the main
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difference to k-stability is that here all agents matter, so also the ones who get worse and vote
against the new matching.

2.4 Relaxing Popularity

The two most commonly used notions for near-popularity are called minimum unpopularity factor
[8, 35, 39, 41, 42, 46, 53] and minimum unpopularity margin [37, 40, 41, 46]. Both notions express
that a near-popular matching is never beaten by too many votes in a pairwise comparison with
another matching. We say that matching M’ dominates matching M by a margin of u — v, where
u is the number of agents who prefer M’ to M, while v is the number of agents who prefer M
to M’. The unpopularity margin of M is the maximum margin by which it is dominated by any
other matching. As opposed to k-stability, the unpopularity margin takes the number of both the
satisfied and dissatisfied agents into account when comparing two matchings.

Checking whether a matching M’ exists that dominates a given matching M by a margin of k
can be done in polynomial time by the standard popularity verification algorithms in all models
[2, 10, 53]. Finding a least-unpopularity-margin matching in the house allocation model is NP-hard
[46], which implies that for a given (general) k, deciding whether a matching with unpopularity
margin k exists is also NP-complete. A matching of unpopularity factor 0, which is a popular
matching, always exists in the marriage model, whereas deciding whether such a matching exists
in the roommates model is NP-complete [25, 32].

The unpopularity margin of a matching expresses the degree of undefeatability of a matching
admittedly better than our k-stability. We see a different potential in k-stability and majority sta-
bility. The fact that, compared to M, there is no alternative matching in which at least k agents
improve simultaneously, is a strong reason for choosing M—especially if k = "T” The decision
maker might care about minimizing the number of agents who would mutually improve by switch-
ing to an alternative matching. If there is a matching, where a significant number of agents can
improve simultaneously, then they may protest together against the central agency to change the
outcome—even though it would make some other agents worse off—out of ignorance or lack of
information about the preferences of others. The unpopularity margin and factor give no infor-
mation on this aspect, as they only measure the relative number of improving and disimproving
agents.

2.5 Majority Stability

The study of majority stable matchings was initiated very recently by Thakur [57]. The three well-
known voting rules plurality, majority, and unanimity translate into popularity, majority stability,
and Pareto optimality in the matching world. A matching M is called majority stable if no matching
M’ exists that is preferred by more than half of all voters to M. The concept is equivalent to "T”-
stability in our terminology.

Thakur observed that majority stability, in sharp contrast to popularity, is strikingly robust to
correlated preferences. Based on this, he argued that in application areas where preferences are
interdependent, majority stability is a more desirable solution concept than popularity. He pro-
vided examples and simulations to illustrate that, unlike majority stable matchings, the existence
of a popular matching is sensitive to even small levels of correlations across individual preferences.
Via a linear programming approach, he also showed that the verification of majority stability is
polynomial-time solvable in the house allocation model.

3 Preliminaries

Next, we describe our input settings in Section 3.1, formally define our optimality concepts in
Section 3.2, and give a structured overview of all investigated problems in Section 3.3.
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house allocation model marriage model roommates model

e ]

Fig. 1. A schematic picture of the three models we investigate in this article. Agents in N are denoted by red
squares, while objects are denoted by black disks. The red edges constitute a matching in each figure.

3.1 Input

In the simplest of our three models, the house allocation model, we consider a set of agents N =
{1,...,n} and a set of objects O. Each agent i € N has strict preferences >; over a subset of O,
called the set of acceptable objects to i, while objects do not have preferences. The notation 0; >; o0,
means that agent i prefers object o; to object 0;. Being unmatched is considered worse by agents
than being matched to any acceptable object or agent. To get a more complete picture, we also
explore cases, where ties are allowed in the preference lists.

In the marriage model, no objects are present. Instead, the agent set N = U U W is partitioned
into two disjoint sets, and each agent seeks to be matched to an acceptable agent from the other
set. In the roommates model, an agent from the agent set N can be matched to any acceptable
agent in the same set.

A matching assigns each object to at most one agent and gives at most one acceptable object
to each agent. For a matching M, we denote by M(i) the object or agent assigned to agent i € N,
which can be the empty set as well. Each agent’s preferences over objects or agents can be extended
naturally to corresponding preferences over matchings. According to these extended preferences,
an agent is indifferent among all matchings in which they are assigned to the same object or agent.
Furthermore, agent i prefers matching M’ to matching M if M’(i) >; M(i).

For clearer phrasing, we often work in a purely graph theoretical context. The acceptability
graph of an instance consists of the agents and objects as vertices and the acceptability relations as
edges between them. This graph is bipartite in the house allocation and marriage models. Figure 1
provides schematic pictures of acceptability graphs belonging to the three model types.

3.2 Optimality
Next, we define some standard optimality concepts from the literature. A matching M is

— weakly Pareto optimal [MocK] if there exists no other matching M’ such that M’(i) >; M(i)
foralli € N;

— majority stable [Thakur] if there exists no other matching M’ such that |i € N : M'(i) >
M(i)| > 2,

— popular [Girdenfors] if there exists no other matching M such that |i € N : M'(i) > M(i)| >
li e N : M(i) > M’(i)].

In words, weak Pareto optimality means that, compared to M, no matching is better for all agents,
majority stability means that no matching is better for a majority of all agents, while popularity
means that no matching is better for a majority of the agents who are not indifferent between the
two matchings. It is easy to see that popularity implies majority stability, which in turn implies
weak Pareto optimality.

We refine this scale of optimality notions by adding k-stability to it. A matching M is

— k-stable if there exists no other matching M’ such that |i € N : M’'(i) > M(i)| > k.

In words, k-stability means that no matching M’ is better for at least k agents than M—regardless
of how many agents prefer M to M’. Weak Pareto optimality is equivalent to n-stability, while
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Table 2. Each Problem Name Consists of Four Components, as Shown in the Columns

of the Table
Optimality criterion Model Presence of ties | Completeness of preferences
k or MAJ HA Or SM Or SR Tor () cori

Table 3. Our Results on the Complexity of Deciding Whether a k-stable Matching Exists
Depending on the Constant ¢

Problem HA SM SR

variant 0<c<1 CS% c>% cS% c>§
C, 1, TC, TI || NP-c: Theorems 5.6, 5.7 | NP-c: Theorem 6.4 | P: Theorem 6.3 | NP-c: Theorem 6.4 | P: Theorem 6.2

NP-c abbreviates NP-complete, while P stands for polynomial-time solvable.

majority stability is equivalent to "T“
(k + 1)-stability.

We demonstrate k-stability on an example instance, which we will also use in our proofs later.

-stability. It follows from the definition that k-stability implies

Example 3.1 (An (n — 1)-stable Matching May Not Exist). Consider an instance in which N =
{1,2,...,n} and O = {04, 02,...,0,}. Each agent has identical preferences of the form o; > 0, >
... > 0p, analogously to the preferences in the famous example of Condorcet [17]. For an arbitrary
matching M, each agent i of the at least n — 1 agents, for whom M(i) # o0; holds, could improve by
switching to the matching that gives them the object directly above M(i) in the preference list (or
any object if i was unmatched in M). Therefore, no matching is majority stable or (n — 1)-stable.

3.3 Our Problems and Contribution

Now, we define our central decision problems formally.

k-HAI
Input: Agent set N, object set O, a strict ranking >; over the acceptable objects for
each i € N, and an integer 1 < k < n.
Question: Does a k-stable matching exist?

Our problem names follow the conventions [45]. MAJ refers to majority-stability. HA stands for
house allocation, sm for stable marriage, and sr for stable roommates. If the preference lists are
complete, that is, if all agents find all objects acceptable, then we replace the 1 standing for incom-
plete by a c standing for complete. If ties are allowed in the preference lists, we add a T. Table 2
depicts a concise overview of the problem names.

For each of the two optimality criteria, there are 3 - 2 - 2 = 12 problem variants. As shown in
Section 4, all variants become tractable when k is a fixed constant. After this, our main goal was
to solve all 12 variants for all k = cn, 0 < ¢ < 1 value, which by definition covers majority stability
as well. Our results are summarized in Table 3. We only leave open the complexity of the four
variants of k-sRr for % <c< %

In order to draw a more accurate picture in the presence of ties, we also investigate two standard
input restrictions [11, 19, 50], see Table 4.

— pc: dichotomous and complete preferences, which means that agents classify all objects or
other agents as either “good” or “bad”, and can be matched to either one of these.

— STI: Possibly incomplete preferences consisting of a single tie, which again means that agents
classify all objects or other agents as either “good” or “bad”, and consider a bad match to be
unacceptable.
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Table 4. Results for the Two Restricted Settings in the Presence of Ties

Problem HA sM and SR
. 1 I 2 2 I 1 I I
variant c<y 3 <c< % c>z c< 3 3<c<3 c> 3
DC NP-c: Theorem 5.9 | NP-c: Theorem 5.9 P: Th s11 NP-c: Theorem 6.8 | NP-c: Theorem 6.8 | P: Theorem 6.7
: Theorem 5.
STI NP-c: Theorem 5.8 | P: Theorem 5.11 NP-c: Theorem 6.6 P: Theorem 6.5 P: Theorem 6.5

Note that these two cases can be different, because if the preferences are pc, then each agent can
be in one of three situations: matched to a good partner, matched to a bad partner, or remain
unmatched. In sT1, each agent is either matched to a good partner or unmatched.

Our hardness proofs rely on reductions from the problem named exact cover by 3-sets (x3c),
which was shown to be NP-complete by Garey and Johnson [31].

X3cC
Input: Aset X = {1,...,3n} and a family of 3-sets S c P(X) of cardinality 37
such that each element in X is contained in exactly three sets.
Question: Are there 71 3-sets in S that form an exact 3-cover of X, that is, each element
in X appears in exactly one of the 7 3-sets?

4 Algorithms for Constant k

We start by showing that when k is a fixed constant, all problem variants are solvable in polynomial
time. This also motivates the case when k = ¢n,0 < ¢ < 1. We first consider the house allocation
model in Section 4.1 and then turn to the marriage and roommates models in Section 4.2.

4.1 Algorithm for the House Allocation Model

We describe our algorithm first, and then prove its correctness in Theorem 4.1. A pseudocode is
provided in Algorithm 1. The main intuition is that if there is a k-stable matching, then we can
guess k edges (v;,0;),1 € [k] in it such that vy, ..., v cannot improve at the same time and then
extend the matching while maintaining this property.

The algorithm iterates through each possible k’ value from 0 to k — 1 (line 2) and checks whether
there exists a matching in which exactly k" agents can improve at the same time, but kK’ + 1 agents
cannot. Clearly, the instance admits a k-stable matching if and only if there is such a matching for
some k' < k — 1.

In one iteration, when k' is fixed (lines 3-19), the algorithm iterates through all possible match-
ings of size k" and starts constructing an envy graph for each. For a matching M, we say that the
envy graph of M is the graph Gj; which has vertex set N U O and has an edge (i, 0) for each pair
such that o >; M(i). Let M = {(v1,01), ..., (Ur,0r)} be the currently checked matching (line 4).
First, we only consider the vertex set {v, . . ., g }UO together with the matching M and construct
the envy graph of M and restrict to these vertices (line 6) (i.e., we delete the rest of the vertices
and their incident edges). If this graph has a matching of size k’ + 1, then the algorithm ends this
iteration and proceeds to the next one (line 8). Otherwise, let vg.q, . . ., v, be the rest of the agents
in N. For each of these agents v;, the algorithm computes in line 15 the worst possible object
oy € O\ {o1,...,0r} they could get without increasing the size of the maximum matching to at
least k” +1 in the envy graph of the matching MU {(v}, 0j)} restricted to G[{v, ..., vk} U{v;}UO].
This can be done with the following simple subroutine. By going through the acceptable objects
for agent v; in the order of their preference (breaking the ties arbitrarily if needed), we add all
edges to the envy graph that connect v; to strictly better objects. If at one step, the addition of
these edges creates a matching of size k’ + 1 in the current envy graph, then we can conclude that
v; must get a strictly better partner than the currently checked one, assuming the matching M is
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ALGORITHM 1: k-HAI
1: Input: G = (N, O, >).
2: fork’ =0,...,k—1do
3 for every matching M of size k’ do
4 M := {(v1,01), . .., (Vk,0k)} (by reindexing)
5: G =G\ ({vg,...,op} U{oy,...,01})
6
7
8
9

Let Hy be the envy graph of M restricted to G[{vy, ..., v} U O]
if Hy has a matching of size k” + 1 then
- Proceed to the next matching in line 3

: else
10: U:=10
11: forj=k"+1,...,ndo
12: if the envy graph of M restricted to G[{v1, . . ., v } U{v;} UO] has no matching
of size k' + 1 then
13: Continue
14: else
15: Let 0j be a worst object for v; such that the maximum size matching in the

envy graph of M U {(vj,0;)} restricted to G[{vs, ..., v} U {v;} U O] has
size strictly less than kK’ + 1

16: U:=UU{v;}

17: Delete all edges from G’ incident to v; that go to strictly worse objects than
I I B ¢

18: if There is a matching M’ in G’ that covers U then

19: 1 | [ return MUM’
0: return No k-stable matching exists.

[}

already fixed. Hence, we add v; to U in line 16 and delete edges from G’ (defined in line 5) that
would match him to at least these bad objects in line 17. If even the addition of all edges for an
agent does not increase the size of the maximum matching in the envy graph, then we conclude
that this particular agent can remain unmatched as it is not added to U in line 16, since the if-
condition then was satisfied in line 12. Then, the algorithm checks whether the matching M can
be extended in a way such that all other agents who must be matched get an as least as good object
as the algorithm computed (line 18). If so, then the algorithm outputs this matching (line 19). If the
algorithm does not find such a matching in any iteration, then it outputs the message “no k-stable
matching exists” (line 20).

THEOREM 4.1. Algorithm 1 solves each of k-HAC, k-HAL k-HATC, and k-HATI in time O(k(n-|O])<+?).

Proor. We show first that if Algorithm 1 outputs a matching M, then M is k-stable, by proving
that the envy graph does not have a matching of size k’ (the value of k” at the termination of the
algorithm). As each agent from U got a partner adjacent to them in G’ after the deletion of edges
in line 17, the size of the maximum matching in the envy graph of M restricted to {v1, ..., v} U
{v;} UO must be at most k’ < k—1forany v; € N\ {vy, ..., vr }. We claim that this holds for the
whole envy graph as well. Indeed, if the addition of two or more vertices together with their envy
edges would increase the size of the maximum matching in the envy graph, then for any matching
M’ of size k" in the envy graph restricted to {vy, ..., v } U O, we must create an alternating path
of M" and non-M’ edges (meaning a path such that both the M and the non-M’ edges of it form
a matching) whose first and last edges are both non-M’ edges, by the Hungarian method [44]
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(otherwise we can conclude that M’ is a maximum size matching). Such an alternating path P
must start from an agent in N \ {vy, ..., v} and end at an unmatched object in M, as vy, ..., vgs
are all matched by M. By choosing a shortest such alternating path, we get that it can only contain
one vertex from N \ {vy, ..., v }. But this means that only the addition of that vertex v; and its
envy edges increases the size of the maximum matching in the envy graph to k > k" + 1, so v;
received a strictly worse object than the computed oj (line 15), which is a contradiction, as the
algorithm then deleted this edge in line 17.

Secondly, we show that if there is a k-stable matching, then the algorithm must find one. Let M
be a matching that is (k” + 1)-stable for the smallest possible k" < k—1 value. Then, the envy graph
of M must have a matching of size k’, but none of size k’ + 1. In particular, there must be k" agents
{v1, ..., } who can improve simultaneously. Clearly, if the algorithm did not find a k-stable
matching, then it must have had an iteration with exactly this k” value, these {vy, . .., vy } vertices
and also their partners {01, ...,0r} in M as the guessed matching in line 3. In that iteration, the
envy graph Hyr on {vy, . . ., v }UO must have had a matching of size k', but then the algorithm still
did not find a matching that is k-stable in lines 11-19. This could only happen because there was
no matching, where all agents outside of {v1, ..., v } obtained an object such that the agent and
their envy edges do not increase the size of the maximum matching in the envy graph. However,
this is a contradiction, as M must be such a matching by our assumptions.

As for the running time, it is easy to see that the number of iterations for the first two loops in
lines 2 and 3 are at most O(k(n - |0|)¥), because there are at most (",I:,) ) =0((n- |O])*") matchings
of size k” meaning that the loop in line 3 has at most this many iterations. In each such iteration,
we do at most n-|O] checks of an increase in the maximum size matching in the envy graph during
lines 11-19 (we have at most n iterations in the loop of line 11 and the subroutine in line 15 does
at most |O| such checks), which can be done with the Hungarian method [44] in O(n - |O]) time.
Hence, the total running time is at most O(k(n - |0])**2). O

4.2 Algorithm for the Marriage and Roommates Models

In this subsection, we study the marriage and roommates models for constant k values. We start by
describing our algorithm (Algorithm 2), and then prove its correctness in Theorem 4.2. The main
idea behind the algorithm is that if we can guess the minimum k’ such that there is a k’-stable
matching, then we can also guess a minimum-size set of agents that can simultaneously improve
in such a matching M and also their partners in M whom they can improve with, and even their
partners in M. Then, in the rest of the graph, the matching must be 1-stable (for more details, see
the proof). In the loop of line 2, our algorithm iterates through all possible matchings of size at
most 2k — 2. Then, in line 3, it deletes the vertices covered by the guessed matching M from the
graph. If this graph has a 1-stable matching M’, then the algorithm checks in line 5 whether MUM’
is k-stable, and if so, it outputs M UM’ as a solution in line 6. If the algorithm fails to find a k-stable
matching in the for-loop, it outputs “no k-stable matching exists” in line 8.

THEOREM 4.2. Algorithm 2 solves each of k-smc, k-sm1, k-smTc, k-smT1, k-src, k-sri, k-srTc, and
k-srrr in O(kn**=2) time.

ProOF. Clearly, if Algorithm 2 finds a matching that is k-stable, then the instance G = (N, E, >)
admits such a matching. Therefore, we need to prove that whenever a k-stable matching exists,
the algorithm finds one.

Suppose G admits a k-stable matching and let 0 < k" < k — 1 be the smallest value k’, such that
the instance also admits a (k’+1)-stable matching and let M be such a matching. Then, compared to
M, k’ agents can improve at the same time, but k" + 1 cannot. Let {vy, ..., vr } be a set of k” agents
who can improve at the same time in a matching M’ and let {vog41, . . ., Usg} be their partners in
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ALGORITHM 2: k-sr

1: Input: G = (N, E, >).

2: for all matchings M of size at most 2k — 2 do

3: G’ := G\ V(M), where V(M) is the set of vertices covered by M
if G’ has a 1-stable matching M’ then
L if M U M’ is k-stable then

_ return MU M’

Proceed to the next matching
: return No k-stable matching exists.

4
5
6:
7
8

M. Furthermore, let {vg11, . .., U2p } be the partners of {v1, ..., v} in M’ and {v3r41,. .., Vgpr }
be the partners of {vg/41,. .., v} in M. Note that an agent may appear in more than one (even
in all) of these four sets. Then, in the graph G’ obtained by deleting all these vertices, it must
hold that M restricted to G’ is a 1-stable matching. Indeed, if there would be a way for an agent
u in G’ to be able to improve compared to M with an agent v, then by adding this edge (u,v) to
{(v1,Vk41)s - - -, (U7, Vagr)} (this set may contain the same edge twice, in which case we only take
it once) we would obtain a matching M”’, where at least k’ + 1 agents can improve simultaneously,
which is a contradiction.

Therefore, when the algorithm is in the iteration corresponding to M= {(vi,vopr4i) | 1 € [2K]}
(only taking each edge in the set once) in line 2, then it is indeed able to conclude that there is
a matching in the remaining instance (after the deletion of V(M)) that is 1-stable in line 4. The
fact that the algorithm checks this matching M follows from [M| < 2k’ < 2k — 2. Also, in this
iteration, it also finds the unique 1-stable matching in the remaining instance, which contains the
remaining edges of M. Therefore, the algorithm finds M in one of its iterations and also concludes
that M is k-stable.

As the number of matchings of size at most 2k — 2 is at most O(kn**~*), the number of iterations
before termination is at most O(kn*~*). As in each iteration, a 1-stable matching, if any exists,
can be found in linear time by looking at the first remaining entries in the preference lists.
Furthermore, as checking if a matching is k-stable can be done in O(n?) time, we can conclude
that the algorithm terminates in O(kn**=2) time. |

5 The House Allocation Model

In this section, we examine the computational aspects of k-stability and majority stability in the
house allocation model for k = ¢n,0 < ¢ < 1. We first present positive results on verification in
Section 5.1 and then turn to hardness proofs on existence and some solvable restricted cases in
Section 5.2.

5.1 Verification

Thakur [57] constructed an integer linear program to check whether a given matching is majority
stable. He showed that the underlying matrix of the integer linear constraints is unimodular (a
square integer matrix having determinant +1 or —1) and hence the problem can be solved in poly-
nomial time, for example, the book of [Schrijver et al.]. Here we provide a simple characterization
of majority stable matchings, which also delivers a fast and simple algorithm for testing majority
stability.

Our first observation characterizes 1-stable matchings.

OBSERVATION 5.1. A matching is 1-stable if and only if each agent gets their most preferred object.
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To generalize this straightforward observation to k-stability and majority stability, we introduce
the natural concept of an improvement graph. For a given matching M in an instance (N, O, >),
let Gy = (N U O, Ejpp) be the corresponding improvement graph, where (i,0) € Ejy, if and only
if 0 >; M(i). In other words, the improvement graph consists of edges that agents prefer to their
current matching edge. We also say that agent i envies object o if (i, 0) € Ejnyp.

OBSERVATION 5.2. Matching M is k-stable if and only if Gy does not admit a matching of size
at least k. In particular, M is majority stable if and only if Gy does not admit a matching of size at
least 1.

2

Proor. It follows from the definition of Gys that Gy admits a matching M’ of size at least k
if and only if in M’, at least k agents get a better object than in M. The non-existence of such a
matching M’ defines k-stability for M. O

Observation 5.2 delivers a polynomial verification method for checking k-stability and majority
stability. Constructing Gy to a given matching M takes at most O(m) time, where m is the number
of acceptable agent-object pairs in total. Finding a maximum size matching in G takes O(y/nm)
time [33].

COROLLARY 5.3. For any k € N, it can be checked in O(\/nm) time whether a given matching is
k-stable. In particular, verifying majority stability can be done in O(\/nm) time.

5.2 Existence

By Corollary 5.3, all decision problems on the existence of a k-stable matching in the house alloca-
tion model are in NP. Our hardness proofs rely on reductions from the problem named exact cover
by 3-sets (x3c), which was shown to be NP-complete by Garey and Johnson [31]. First, we present
our results for the problem variants with possibly incomplete preference lists in Section 5.2.1, then
extend these to complete lists in Section 5.2.2, and finally, we discuss the case of ties in the prefer-
ences in Section 5.2.3.

X3c
Input: Aset X = {1,...,3n} and a family of 3-sets S C P(X) of cardinality 37
such that each element in X is contained in exactly three sets.
Question: Are there 7 3-sets in S that form an exact 3-cover of X, that is, each element
in X appears in exactly one of the 7 3-sets?

5.2.1 Incomplete Preferences.
THEOREM 5.4. k-HAI is NP-complete even if each agent finds at most two objects acceptable.

Proor. Let I be an instance of x3c, where S = {Si,...,S35} is the family of 3-sets and S; =
{j1,Jo2,j3}. We build an instance I’ of k-HAI as follows. For each set S; € S we create four agents
s}, s]?, 3]3, tj and an object p;. For each element i € X we create an object 0; and two dummy agents
d},d?. Altogether we have 124 + 67 = 18 agents and 37 + 3A = 6/ objects. The preferences are
described and illustrated in Figure 2.

We prove that there is a (57 + 1)-stable matching M in I’ if and only if there is an exact 3-cover
inI.

Cram 1. IfI admits an exact 3-cover, then I’ admits a (57 + 1)-stable matching.

Proof: Suppose that Sy, . . ., S;, form an exact 3-cover. Construct a matching M as follows: for each
Jj € [37] match t; with p;. For each j € {I3,. .., I3} match s’}f with o, for f € [3]. As each object is
covered exactly once, M is a matching.
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P I

sf: 0j, = p;j forje[3d],¢ e [3]
tj: pj for j € [37] °1
clil,di2 T 04 for i € [3n]

1 1

& d} d3 d}
Fig. 2. The preferences and a graph illustration of a gadget of a set S; = {1, 2,3} in the proof of Theorem 5.4.
Red squares are agents, black disks are objects, and the numbers on the edges indicate the preferences to
the left of the graph. Dashed edges run to other gadgets. Each agent finds at most two objects acceptable.

We claim that M is (57 + 1)-stable. Due to Observation 5.2, it is enough to show that at most
5f objects are envied by any agent, so the improvement graph Gy, has at most 57 objects with
non-zero degree. For each j € {I;,...,l3}, the object p; is not envied by anyone, as all of s}, s]?, s;.’
got their best object and t; got p;. Hence, at most 271 objects of type p; and at most 37 objects of
type o; are envied, proving our claim. ]

Cram 2. IfI’ admits a (57 + 1)-stable matching, then I admits an exact 3-cover.

Proof: Let M be a (57 + 1)-stable matching. First, we prove that in M at most 57 objects are envied
by any agent, because we can construct a matching M’ that gives all envied objects to an agent
who envies them. Each object o; is envied in any matching by at least one of d} and d? and can be
given to the envious agent in M’. Regarding envied objects of type p;, one agent only finds at most
one p; object acceptable, which implies that each envied p; can be assigned to an envious agent
in M’. Therefore, M’ is indeed a matching.

As at most 57 objects can be envied and all o; objects are envied in M, at most 27 envied ob-
jects are of type p;. This implies that at least 7 objects of type p; are not envied by any agent.
As these objects are the first choices of their sf, { € [3] agents, those agents must all get their
first-choice object of type o0;. As M is a matching, these sets constitute an exact 3-cover. ® O

THEOREM 5.5. MAJ-HAI is NP-complete even if each agent finds at most two objects acceptable.

Proor. We extend our hardness reduction in the proof of Theorem 5.4. To show the hardness
of MaJ-HAI we add 87 more gadgets to the instance I’, each consisting of 3 agents and 3 objects,
such that all 3 agents have the same preference order over their three corresponding objects. This
gadget is a small version of our example instance in Example 3.1. It is easy to see that in any such
gadget, there is a 3-stable matching, but there is no 2-stable matching. Hence, the new instance
has 187 + 8 - 371 = 42n agents and there is a 5f + 1 + 8 - 271 = (2174 + 1)-stable matching if and only
if there is an exact 3-cover. ]

We now apply a more general scaling argument as in the proof of Theorem 5.5 to show that
finding a k-stable matching is NP-complete for any non-trivial choice of k.

THEOREM 5.6. k-HAI is NP-complete for any constant 0 < ¢ < 1 and k = cn.
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Proor. Our construction in the proof of Theorem 5.4 can be extended to k-HAI by scaling the
instance. This scaling happens through the addition of instances that either admit no k-stable
matching even for a high k, or admit a k-stable matching even for a low k. The instance in Ex-
ample 3.1 admits no (n — 1)-stable matching. Constructing an instance with a 1-stable matching
is easy: one (1,0;) edge suffices. For any constant ¢, we can add sufficiently many of these scal-
ing instances to construct an instance that admits a cn-stable matching if and only if the original
instance admits a majority stable matching. O

5.2.2 Complete Preferences. We now extend our hardness proof in Theorem 5.6 to cover the
case of complete preference lists as well.

THEOREM 5.7. k-HAC is NP-complete for any constant0 < ¢ < 1 andk = cn. In particular, MAJ-HAC
is NP-complete.

ProOOF. We start with an instance I of k-HAI and create an instance I’ of k-HAc as follows. For
each agent i € N, we add a dedicated dummy object d;. Then, we extend the preferences of the
agents in a standard manner: we append their dedicated dummy object to the end of their original
preference list, followed by all other objects in an arbitrary order.

Suppose first that there is a k-stable matching M in I. We construct a matching M’ in I’ by
keeping all edges of M and assigning each unmatched agent in M to their dummy object in M. As
the improvement graph of M’ in I’ is the same as the improvement graph of M in I, M’ is k-stable
inl’.

Now suppose that there is a k-stable matching M’ in I’. Construct a matching M by taking
M = M’ N E, where E denotes the edges of the acceptability graph of I. We claim that M is k-
stable in I. Suppose that matching M” is preferred to M by more than k agents in I. We claim that
M" is preferred to M as well by more than k agents in I’. Indeed, each agent who prefers M”’ to
M must be assigned to an object in M’ that is acceptable to them in I, so it is better than their
dummy object. As each agent either obtains the same object in M and M’, or is unassigned in M
and matched to their dummy object in M’, we get that each improving agent prefers M" to M’. O

5.2.3 Ties in the Preference Lists. From Theorems 5.6 and 5.7 follows that k-HATI and k-HATC are
both NP-complete for any constant 0 < ¢ < 1 and k = cn. Therefore, we investigate the preference
restrictions DC and sTI, as defined in Section 3.3. We provide a complete complexity picture with
respect to the parameter c. We first discuss the NP-complete cases, and then we complement those
with polynomial algorithms for other values of c.

We start with the preference restriction sTI.

THEOREM 5.8. k-HATI is NP-complete even if each agent puts their (at most two) acceptable objects
into a single tie. This holds for any k = cn with0 < ¢ < %

Proor. We use the same construction as in Theorem 5.4, on 187 agents, except that the agents
with two objects in their preference lists are indifferent between these objects. Let I be an instance
of x3c and I’ be the constructed k-HATI instance. We will prove that there is a (5i + 1)-stable
matching M in I’ if and only if there is an exact 3-cover in I. As the constructions are very similar,
only small modifications to the proof of Theorem 5.4 are needed.

Cram 3. IfI admits an exact 3-cover, then I’ admits a (5a + 1)-stable matching.
Proof: Suppose that Sy, . . ., S;, form an exact 3-cover. Construct a matching M as follows: for each

Jj € [37], match t; with p;. For each j € {l3, ..., I3} match sf with oj, for £ € [3].
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To prove that M is (57 + 1)-stable, it is enough to show that at most 57 objects are envied, so the

improvement graph Gy has at most 57 objects with non-zero degree. For each j € {l;, ..., 1}, the
object p; is not envied by any agent: all of s}, s]?, s]?, and ¢; got an object. Hence, there are at most
27 objects of type p; and at most 37 objects of type o; envied, proving our claim. ]

Cramm 4. IfI" admits a (5A + 1)-stable matching, then I admits an exact 3-cover.

Proof: Let M be a (57 + 1)-stable matching. First, we prove that in M at most 57 objects are envied
by any agent, because we can construct a matching M’ that gives all envied objects to an agent
who envies them. Each object o; is envied in any matching by at least one of d} and d? and can be
given to the envious agent in M’. Regarding envied objects of type p;, one agent only finds at most
one p; object acceptable, which implies that each envied p; can be assigned to an envious agent
in M’. Therefore, M’ is indeed a matching.

As at most 57 objects can be envied and all 0; objects are envied in M, at most 271 envied objects
are of type p;. This implies that at least 7 objects of type p; are not envied by any agent. As these
objects are acceptable to their sf, ¢ € [3] agents, those agents must all get their other acceptable
object of type 0;. As M is a matching, these sets constitute an exact 3-cover. [ |

Finally, we can add sufficiently many instances to I’, each of which consists of two agents and
one object, with both agents only considering their one object acceptable. In this small instance,
there is no cn-stable matching with ¢ < %, so hardness holds for any such ¢ > 1%. Similarly, we
can add instances with one agent and one object to prove the hardness for 0 < ¢ < %. O

Our next result for the house allocation model is valid for the preference restriction bc.

THEOREM 5.9. k-HATC with dichotomous preferences is NP-complete
(1) for any k = cn withc¢ < % even ifn = |0O|;
(2) if |O] < n, then even for any k = cn with ¢ < %

Proor. We extend the reduction used in the proof of Theorem 5.8. First, we prove the hardness
fork = % then we pad the instance to cover 0 < ¢ < % and finally, we extend our proofto ¢ < %
with the assumption that |O| < n.

We add another 12/ dummy objects to the k-HATI instance and extend the preferences of the
agents such that they rank their originally acceptable objects first, and all the other objects—
including the 127 dummy objects—second. Since the acceptability graph is complete, and n = |O|,
it is clear that if there exists a (54 + 1)-stable matching, then there exists a (57 + 1)-stable matching
in which all agents are matched.

We claim that there is a (57 + 1)-stable matching in this modified instance I’ if an only if there
is a (57 + 1)-stable matching in the original k-HATTI instance I.

Indeed, if there is such a matching M in I, then all original objects are matched, and extending
M in I’ by matching the unmatched agents to the dummy objects arbitrarily produces a matching
M’ that must be (57 + 1)-stable, as only those agents can improve who got a dummy object, and
only by getting a first-choice, hence originally acceptable, object.

If there is a (57 + 1)-stable agent-complete matching in I’, then among the agents who are
matched to second-choice objects, at most 57 can improve simultaneously. Specifically, there must
be a matching in the graph G’ induced by the best object edges for each agent, such that among the
unmatched agents at most 57 can be matched in G’. Such a matching must be (57 + 1)-stable in I.

To prove hardness for all 0 < ¢ < 1, we either add agents with a dedicated first-ranked object
for small ¢ or multiple instances with two agents and two objects, one as their only first-ranked
object and the other one ranked second by both of them for larger c. At least half of those
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agents will always be able to improve even after we make the preferences complete by adding all
remaining edges and setting the preferences for the originally unacceptable objects as second.
Finally, suppose that |O| < n. We extend the hardness for 3 < ¢ < . For this, we further add
sufficiently many copies of an instance with two objects and three agents, such that one object is
best, while the other object is second-best for all three agents. Finally, we add the remaining edges
as second-ranked edges. Let x be the number of copies we added and let I”” be the new instance.
We claim that there is a (57 + %x + 1)-stable matching in I’” if and only if there is a (54 + 1)-stable
matching in I’. In one direction, if M’ is (57 + 1)-stable in I’, then we create M’ by matching
two out of the three agents in each added instance to their corresponding two objects. Then,
M" is (50 + %x + 1)-stable, because at most %x + 57 agents can improve by getting first-ranked
objects and at most %x agents can improve by getting matched. In the other direction, if there is a
(Sﬁ + %x + 1)—stable matching M"" in I”’, then we claim that M"’ restricted to I’ is (571 + 1)-stable
in I’. Otherwise, more than 5 + 1 agents could improve by getting a first-ranked object among
the ones in I’, and at least 5 agents could improve by getting a first-ranked object among the
newly added agents and there are at least 3 unmatched agents, who all could improve with any

object left, which is altogether more than 57 + %x + 1, contradiction. O

Remark 5.10. If we add O(A%) new agents to the instances (with a 1-stable matching among
them) in the scaling procedures for some constant d, we obtain that all hardness results of the
section remain intact even for k = O(n'/?).

We complement the above hardness results with positive results for the remaining cases for c.

THEOREM 5.11. If each agent’s preference list is a single tie, then the following statements hold.

(1) For MAJ-HATI, a majority stable matching exists and can be found in O(\/nm) time.

(2) For MAJ-HATC with |O| > n and dichotomous preferences, a majority stable matching exists and
can be found in O(+/nm) time.

(3) For maj-HATC with |O| < n, a (2?” + 1)-stable matching exists and can be found in O(\/nm)
time.

Proor. We prove each statement separately.

(1) We claim that any maximum size matching M is majority stable in this case. If [M| > 7,
then M is obviously majority stable, as at least half of the agents obtain an object. If [M| < 7,
then M is also majority stable. Suppose there is a matching M’, where more than 7 agents
improve. Then |[M’| > 7, contradicting the fact that M with [M| < % is a maximum size
matching.

(2) We first find a maximum size matching in the graph containing only the first-choice edges
for each agent. Then we extend this matching by assigning every so far unmatched agent
a second-choice object. Note that this is possible as the preferences are dichotomous and
complete. In this matching, agents can only improve by switching to a first-choice object
from a second-choice object. This cannot be the case for a majority of the agents, because
we started with a maximum size matching in the graph containing only the first-choice edges
for each agent. So the constructed matching is majority stable.

3) If 0] < %n, then the statement is obvious. Otherwise, let M be a maximum matching that
matches as many agents to a first-choice object as possible—constructed the same way as
in the previous case. If M matches at least % agents to first-choice objects, then at most
%n agents can improve, so M is (%n + 1)—stable. Otherwise, let x < % denote the number
of agents who get a first-choice object in M and y denote the number of agents who get a
second-choice object. Clearly, at most x + (n—x —y) = n—y agents can improve in a different
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matching. Hence, if M is not (%n + 1)-stable, then y < % and x < % contradicting that we

assumed that the number of objects x + y is at least %n ]

The first two statements and the fact that k-stable matchings are also k + 1-stable imply the
following.

COROLLARY 5.12. k-HATI is solvable in O(y/nm) time for any k = cn with ¢ > % when each
preference list is a single tie. The same holds for k-HATC with dichotomous preferences and ¢ > % in

the case of |O| = n; and ¢ > % in the case of |0| < n.

6 The Marriage and Roommates Models

In this section, we settle most complexity questions in the marriage and roommates models for
k =cn,0 < ¢ < 1. Just as in Section 5, we first prove that verification can be done in polynomial
time in Section 6.1 and then turn to the existence problems in Section 6.2.

6.1 Verification

THEOREM 6.1. Verifying whether a matching is k-stable can be done in O(n®) time, both in the
marriage and roommates models, even if the preference lists contain ties.

Proor. Let M be a matching in a k-sr1 instance. We create an edge weight function w, where
w(e) is the number of end vertices of e who prefer e to M. From the definition of k-stability follows
that M is k-stable if and only if maximum weight matchings in this graph have weight less than k.
Such a matching can be computed in O(n®) time [27]. O

6.2 Existence

Similar to the HA model, it turns out that the computational complexity with respect to the param-
eter ¢ does not depend on whether ties or incomplete preferences are allowed or not (assuming
we have no additional restrictions like sTI or Dc). Hence, we first settle the complexity of the gen-
eral problems for the marriage and roommates models in Section 6.2.1 and then for the restricted
variants sTI and Dc in Section 6.2.2

6.2.1 General Preference Lists. We start by providing our algorithm for the most general case,
that is, the roommates model with ties and incomplete preference lists. We show that there always
exists a (%n + 1)-stable matching and we can find one in O(m) time.

To show that a (%n + 1)—stable matching exists even in the roommates model with ties, we first
introduce the concept of stable partitions, which generalizes the notion of a stable matching. A
stable partition defines a set of edges and cycles. More formally, let (N, >) be a stable roommates
instance. A stable partition of (N, >) is a permutation 7 : N — N with (i, 7(i)) € E Vi € N such

that for each i € N:

(1) if 7(i) # 771(i), then (i) >; w~1(i), i.e., the preferences in the cycles of 7 are cyclic;
(2) for each (i,j) € E, if n(i) = i or j >; n (i), then 77'(j) >; i, i.e., there are no edges strictly
preferred by both endpoints to some their partners (if there is any) in 7.

One may also think of stable partitions as half-integral stable matchings, i.e., a function i : E —
{0, %, 1}, such that for each edge (i, j) € E with u(i, j) < 1, we have that either }; u(i,j’) = 1 and
Jj =i jforallj € p(i) = {j” : p(i,j') > 0} or 2, u(i’,j) = 1and i’ > jfor all i’ € p(j). It is easy to
see that a stable partition 7 corresponds to a half-integral stable matching by setting p(i, j) = 1 if
(i) = j,x(G) =i, p(i, j) = %, if exactly one of 7(i) = j and 7(j) = i holds, and p(i, j) = 0 otherwise.

ACM Trans. Econ. Comput., Vol. 13, No. 1, Article 5. Publication date: February 2025.



Computational Complexity of k-stable Matchings 5:17

5
/17'§4\
2% 6% 4> 3% 6 3 2 5 ? 1.4
~~—! 41—
3% 5% 1» 6> AN s— 3

1> 6> 2> 5>
5= 2> 3> 6>

6> 1> 3> 4>

A S L T
W N R R G

4> 2> 5> 1>

Fig. 3. A 6-agent instance given with its strict preferences on the left, and in the graph representation form
on the right. The marked red entries and edges constitute the stable partition 7 = (2,3, 1,5, 6,4).

Reversely, it is not hard to see that in a half-integral stable matching, the fractional edges form
vertex-disjoint cycles with cyclic preferences, so the matching corresponds to a stable partition 7.

Tan [55] showed that a stable partition always exists and that one can be found in polynomial
time. A slightly simpler approach has been given by Tan and Yuang-Cheh [56]. The main idea of
the algorithm is to start from a single vertex, and then add the vertices one by one and always main-
tain a stable partition of the current graph with a procedure similar to the classic Gale-Shapley
algorithm. Tan [55] also proved that a stable matching exists if and only if a stable partition does
not contain any odd cycle. An example instance [38] with a stable partition consisting of two odd
cycles is depicted in Figure 3.

THEOREM 6.2. For anyk = cn withc > %, a k-stable matching exists in k-Srr and can be found in
O(m) time.

ProoOF. We present an algorithm to construct such a matching. We apply Tan’s algorithm to
obtain a stable partition. Then, for each odd cycle of length at least three, we remove an arbitrary
vertex from the cycle. This leaves us with components that are either even cycles, or paths on an
even number of vertices, or single vertices, as the odd cycles become paths on an even number of
vertices after the removal of a vertex. In all these components except the single vertices, we choose
a perfect matching.

The running time of Tan’s algorithm [55] is O(m). Besides this, our algorithm only has to go
through each cycle to delete a vertex if it is odd and then choose a perfect matching in the cycle/-
path. Therefore, the whole running time is O(m) too.

Denote the matching obtained in this way by M. Clearly, M has at most 7 edges. We claim that
M is (gn + 1)-stable. Let M’ be any matching. Observe that if an edge e € M’ has the property
that both of its end vertices prefer it to M, then e must be adjacent to one of the deleted vertices.
This is because otherwise, both end vertices of e would prefer e to their worst partner (if there
is any) in the stable partition, but this is a contradiction to it being a stable partition in the first
place. Also, observe that the number of deleted vertices is at most the number of odd cycles, which
is at most 5. Combining these, we get that the number of agents who prefer M’ to M is at most
2o2+(3-8)=in

Hence, M is (gn + 1)-stable, which proves our statement. O

As k-src, k-smi, and k-sMmc are subcases of k-sri, the existence of a k-stable matching follows
from Theorem 6.2.
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Next, we show that in the marriage model, even majority stable matchings are guaranteed
to exist.

THEOREM 6.3. In the marriage model, a majority stable matching exists and can be found in O(m)
time. Thus, for any k = cn withc > % a k-stable matching exists and can be found in O(m) time.

Proor. Even in the presence of ties, a popular matching can be found in O(m) time [10, 30]. As
each popular matching must be majority stable, the statement follows. ]

As majority stable matchings always exist in the marriage model, it is natural to ask whether
we can find a majority stable matching that is a maximum size matching as well. We denote the
problem of deciding if such a matching exists by max-maj-smr. In the case of complete prefer-
ences, a maximum size and majority stable matching exists and can be found efficiently, as popu-
lar matchings are both majority stable and maximum size. Otherwise, the situation is less prefer-
able, as the following theorem shows, which also settles the complexity of k-smc, k-smi, k-SRc
and k-SRI

THEOREM 6.4. The following problems are NP-complete:

(1) mAax-MAJ-smI even if [U| = [W|;

(2) k-smc and k-smr for any k = cn with ¢ < % even if [U| = |W]|;
(3) k-src and k-sr1 for any k = cn with ¢ < %

Proor. By Theorem 6.1, all decision problems on the existence of a k-stable matching in the
marriage and roommates models are in NP. We again reduce from x3c. Let I be an instance of x3c
and let S = {Sy,..., S3;;}. First, we create an instance I’ of sm, which admits a (167 + 1)-stable
matching if and only if it admits a maximum size (167 + 1)-stable matching if and only if I admits
an exact 3-cover. This instance will be the basis of all three reductions.

Let us denote the two classes of the agents we create in I’ by U and W. For each set S; € S we

123 . 1,2 3 o s .
create five agents $j. 57,57, Yj.¢; in U, and five agents Cj» Cj> 5, Xj, pj i W. For each elementi € X

we create five agents b;, d;, e;, f/, g; in U and five agents a;, gll’, e/, fi.gi in W. Altogether we have
n = 607 agents.

The preferences are described in Figure 4. Let S; = {j1, j2, j3} and for an element i, let S;,, Sj,, Si,
be the three sets that contain i, with ¢y, {5, {3 denoting the position of i in the sets S;,,Si,, Si,,

respectively.
CraM 5. If1 admits an exact 3-cover, then I’ admits a maximum size (167 + 1)-stable matching.

Proof: To the exact 3-cover Sy, ...,S;, in I we create a matching M in I’ as follows—see Figure 4
as well.

— For each i, j € [37], we add the edges (y;, p;). (d;. d)), (ei, €]), (q;. x;), (f}, fi). (g}, 9)-

—TForeachje {lj,...,l5} and € € [3], we add the edges (sf, aj,), (bj,, cf).

—TForeachj ¢ {ly,...,l;} and € € [3], we add the edge (sf, cf).
As the sets formed an exact cover, M is a matching, and because all agents are matched, M is a
maximum size matching in I’. We next show that in any matching M’, at most 167 agents can
improve.

— Agents of type s¢, cf can improve with an agent of type p; or g;, respectively, if (sf, cf) € M.

As Sy, ...,S;, was an exact cover, at most 27 of the sf agents can improve with an agent

of type pj—only those with j ¢ {l;,...,l;}—and similarly, at most 27 of the cf agents can
improve with an agent of type g;.
— Agents of type a; or b; can improve.
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Fig. 4. The construction for Theorem 6.4. The preference list of each created agent, i,j € [37], £ € [3], can
be seen above the graph. The figure illustrates the gadget of a set S; = {1, 2,3}. The numbers on the edges
indicate the preferences. Thick edges denote the matching edges if S1 is in the exact-3-cover, dashed edges

run to other gadgets.
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— All other agents can only improve by switching to an agent of type a; or b;. Even if all agents

of type a;, b; improve and they get a partner who also improves with them, 2 - 2 - 34 = 124
agents can improve as or through agents of type a; or b;.

Therefore, altogether at most 47 + 127 = 16A agents can improve, concluding the proof of our

claim. ]

Cramm 6. IfI’ admits a maximum size (167 + 1)-stable matching, then I admits a (167 + 1)-stable
matching.

Proof: Trivial. u
Cramm 7. IfI” admits a (167 + 1)-stable matching, then I admits an exact 3-cover.

Proof: Suppose that I’ admits a (167 + 1)-stable matching M, but there is no exact 3-cover in I. We
count the number of agents who can improve.

— For any i, if a; is not matched to d; in M, then both g; and d; can improve if they get matched
together, and otherwise both d and e; can improve with the edges (d;, d}), (e;, a;). Therefore,
in any M, at least 671 agents from the set {d],d;,e;,a; | i € [37]} can improve among them-
selves and similarly, at least 67 agents from {f/, fi,gi,b; | i € [3A]} can improve among
themselves.

— As no exact 3-cover exists in I, there are at least 271+ 1 indices j € [37], such that at least one
of {s}, s]?, 313.} is not matched to an agent of type a; in M and similarly, there are at least 27 + 1

indices j’ € [37], such that at least one of {cJI.,, cjz./, c]3.,} is not matched to an agent of type

b; in M. For each such j and j’, at least one of the agents in the set {sjl., SJZ., s;, yj,p;} and at

least one of the agents in {c},, c]z,, c]3.,, Xj,qj} can improve among themselves: if (y;, p;) ¢ M

or (qj7,xy) ¢ M, then y; and p; or x; and g can both improve with each other, otherwise
there is an s agffnt with a ¢; agentorac ' agent with an s ' agent, who could improve with
pj or gy, respectively.
Altogether at least 1271+4A+2 = 167+2 agents can improve, a contradiction to the (167+1)-stability
of M. ]

Now we use this construction to prove the hardness of all three problems.

(1) For max-majJ-sm1, we add a path P with 287+2 vertices to I’, to have 887+2 agents. Path P has
an even number of vertices and therefore a unique maximum size matching Mp. However, we
create the preferences of the agents such that they all prefer their other edge in P, except for
the end vertices. Hence, by switching to the edges in P outside of Mp, 281 agents improve. So
in this instance, there is a maximum size majority stable matching, and, therefore, a (4471 +2)-
stable matching if and only if I” admits a matching, where at most 167i+1 agents can improve,
which happens if and only if I admits an exact 3-cover, as we have seen in the main part of
the proof.

(2) We distinguish two cases for k-smc. First, let % <c< % In this case, we add to I’ some paths
on four vertices, such that the vertices with degree two prefer the middle edge. Hence, for
any matching M, in any of these paths, at least two agents can improve. By adding enough
of these paths, we can get an instance that has a k-stable matching for k = cn if and only if
there is a (167 + 1)-stable matching in I’.

Forc < 14—5, we add a sufficiently large instance that admits a 1-stable matching—a union of
edges suffices.

(3) We apply a similar case distinction for the last statement on k-src. First, let 14—5 <c< %
Now, we add to I’ some (but an even number of) triangles with cyclic preferences. For any
matching M, in any such triangle, at least two out of the three agents can improve. This still
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holds if we add edges between the vertices of the first two, the vertices of the second two,
..., the vertices of the last two triangles, which are worse for both sides. This leads to an
instance in which there is a complete k-stable matching if there is any k-stable matching.
Hence, by adding sufficiently many of these triangles, we can get an instance that has a
k-stable matching for k = cn if and only if there is a (167 + 1)-stable matching in I’.

For ¢ < %, we add a sufficiently large instance that admits a 1-stable matching.

The second and the third reductions remain intact for complete preferences when we add the
remaining agents to the end of the preference lists. It is easy to see that if there is a k-stable
matching M’ with the extended preferences, then there is one where each agent obtains an original
partner—we just project M’ to the original acceptability graph to get M. If there is a matching M"’,
where at least k agents improve from M, then these k agents must also prefer M"" to M’, which
contradicts the k-stability of M’.

In the other direction, we have by our reduction that if there is a k-stable matching M with
incomplete preferences, then there is one that is complete as well. Hence, agents can only im-
prove with original edges, so if a matching M"” would be better for at least k agents than M
with complete preferences, then so would it be with incomplete preferences as well, which is a
contradiction. ]

6.2.2 Restricted Preferences. We now turn to the preference-restricted cases of sT1 and pc. We
start with our results for st1, and then we discuss our results for pc.

THEOREM 6.5. Ifeach preference list consists of a single tie, then a k-stable matching can be found
O(\/nm) time for any k = cn,c > 3.

ProoF. Let M be a maximum size matching in the acceptability graph G = (N, E), which can
be found in O(y/nm) time [47]. We claim that M is (% + 1)-stable. Suppose there is a matching
M’, where at least £ + 1 agents improve. As the preferences consist of a single tie, this is only
possible if all of them were unmatched in M and they can be matched simultaneously. By the
famous Gallai-Edmonds decomposition, we know that there is a set X ¢ N such that

— each maximum size matching matches every vertex of X;

— every vertex in X is matched to a vertex in distinct odd components in G \ X;

— has exactly g(X) — |X| unmatched vertices, each of which are in distinct odd components in
G\ X, where q(X) denotes the number of odd components in G \ X.

As % + 1 agents can improve, we get that g(X) — |X| > 7. Let s denote the number of singleton
components in G \ X. If such a vertex was unmatched in M, then it can only improve by getting
matched to someone in X. Let x < s be the number of agents in singleton components who
improve in M’. Then, |X| > x by our observation. Also, at least § — x + 1 agents must improve
from the other odd components, which all have a size of at least 3. Furthermore, there must be at
least x odd components, whose vertices are all matched by M according to the Gallai-Edmonds
characterization. Hence, we get that the number of vertices of Gis atleast x +3-(5 —x+1)+2-x >
n + 3, which is a contradiction. O

THEOREM 6.6. Forc < % and k = cn, k-sm1 is NP-complete even if each preference list is a single
tie.

Proor. We start with the reduction in the proof of Theorem 5.8. There, one side of the graph
consisted of objects, which now correspond to agents. To ensure that each agent’s list is a single
tie, all acceptable agents are tied in the preference lists of these new agents.
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In the proof of Theorem 5.8, we showed that in the base instance with 187 agents and 67 objects
it is NP-complete to decide if there exists a (57 + 1)-stable matching. As the reduction had the
property that any inclusion-wise maximal matching assigned all objects, it follows that in our new
instance with two-sided preferences there is a (57 + 1)-stable matching if and only if there was one
with one-sided preferences, as we can always suppose that the agents on the smaller side cannot
improve.

To extend hardness to ¢ < 3%,

we just add a sufficiently large instance that admits a 1-stable
matching. To extend hardness to any 2 < ¢ < %, we add paths with 3 vertices to the instance.
As in each such path, there is always an unmatched agent, at least one third of these agents can

improve, hence by adding sufficiently many copies, the theorem follows. O
Now we move on to complete and dichotomous (pc) preferences.

THEOREM 6.7. If the preferences are complete and dichotomous, then a k-stable matching exists
and can be found in O(n®) time for any k = cn,c > %

Proor. We define the edge weight function w(e) as the number of end vertices of e who rank e
best. For a matching M, w(M) is equal to the number of agents who get a first choice. Let M be a
maximum weight matching with respect to w(e). Then we extend M to a maximum size matching,
which matches all agents as the preferences are complete. Suppose there is a matching M’, where
more than 7 agents improve. As agents can only improve by getting a first-choice partner, we get
that w(M’) > 5 > w(M), contradiction. O

THEOREM 6.8. Forc < 1 and k = cn, k-smtc is NP-complete even if the preferences are dichoto-

mous.

Proor. We extend the instance in Theorem 6.6—which had 37 agents on one side and 187 on
the other side—by completing the acceptability graph via adding the remaining edges such that
they are ranked second for each end vertex. It is clear that deciding if there is a (57 + 1)-stable
matching remains NP-complete.

To show hardness for smaller ¢ values, we pad the instance by adding pairs of agents who rank
each other first, and all other agents second. For % <c¢ < % we first add paths with 4 vertices,
such that the middle two vertices only rank each other first, while the end vertices rank their only
neighbor first. In this small instance, at least half of the agents can always improve and this fact
remains true even after making the acceptability graph complete by adding the remaining edges

as second best for all agents. ]

Remark 6.9. If we add O(%) new agents to the instances in the padding procedures for some

arbitrary constant d, then we obtain that all hardness results of the Section remain even for k =
1/d
nt/4.

7 Conclusion and Open Questions

We have settled the main complexity questions on the verification and existence of k-stable and
majority stable matchings in all three major matching models. We derived that the existence of a
k-stable solution is the easiest to guarantee in the marriage model, while it cannot be guaranteed
for any non-trivial k at all in the house allocation model. Only one case remains partially open:
in the roommates model, the existence of a k-stable solution is guaranteed for k = cn,c > g
(Theorem 6.2), whereas NP-completeness was only proved for ¢ < % (Theorem 6.4, point 3). We
conjecture polynomial solvability for % <c< % as we were unable to find even a single no-instance

despite substantial effort.
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Another interesting open problem is to answer the complexity for small, sublinear k between
O(1) and O(n'/9).

A straightforward direction of further research would be to study the strategic behavior of the
agents. It is easy to prove that k-stability, as stability and popularity, is fundamentally incompatible
with strategyproofness. However, mechanisms that guarantee strategyproofness for a subset of
agents might be developed. Another rather game-theoretic direction would be to investigate the
price of k-stability.

A much more applied line of research involves computing the smallest k for which implemented
solutions of real-life matching problems are k-stable. For example: given a college admission pool
and its stable outcome, how many of the students could have gotten into a better college in another
matching? With our terminology, how large is the maximum matching in the improvement graph
Gy belonging to the calculated solution M? We conjecture that the implemented solution can
only be improved for a little fraction of the applicants simultaneously. Simulations supporting this
could potentially strengthen the trust in the system.
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