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Abstract

We study the transit stop placement (TrSP) problem in general metric spaces, where agents travel
between source—destination pairs and may either walk directly or utilize a shuttle service via selected
transit stops. We investigate fairness in TrSP through the lens of justified representation (JR) and the
core, and uncover a structural correspondence with fair clustering. Specifically, we show that a constant-
factor approximation to proportional fairness in clustering can be used to guarantee a constant-factor
biparameterized approximation to core. We establish a lower bound of 1.366 on the approximability of
JR, and moreover show that no clustering algorithm can approximate JR within a factor better than
3. Going beyond clustering, we propose the Expanding Cost Algorithm, which achieves a tight 2.414-
approximation for JR, but does not give any bounded core guarantee. In light of this, we introduce
a parameterized algorithm that interpolates between these approaches, and enables a tunable trade-off
between JR and core. Finally, we complement our results with an experimental analysis using small-
market public carpooling data.

1 Introduction

A municipality has decided to offer a publicly-operated shuttle to offer its residents a safe, convenient,
and accessible alternative to private vehicles. Towards this end, the public infrastructure planner has been
allocated a budget to construct a desired number of shuttle stops. Given data describing the common trips
made by each resident that would use the shuttle service, how can the planner decide where to place the
shuttle stops? This problem, which we call the Transit Stop Placement Problem (TrSP), is the focus of this
work.

While the focus of prior public transportation research in civil engineering and operations research is
typically on efficiency and cost minimization [9, 18, 30, 38], there has been a growing appreciation of equity
concerns when designing and planning infrastructure in the last decade [7, 25, 26]. In terms of our problem,
while each resident (referred to as agents, henceforth) would prefer to have a shuttle stop at the exact
addresses of their starting point (e.g., home) and destination (e.g., work), the aim of the planner is to select
a set of stops that is as fair as possible to the agents, subject to scarce resources. Bullinger et al. [7] recently
studied this question in the case in which all agents and potential stops are located on a line. Inspired by the
literature on committee voting [see, e.g., 3, 24], they defined fairness properties known as core and justified
representation (a relaxation of core). Rather than take an egalitarian formulation of fairness, which may
overcorrect for an isolated resident and hence result in stop placements which are not convenient for any
agent, core and justified representation are based upon the ideal of proportional representation, i.e., one in
which groups of agents with similar preferences are entitled to resources in proportion to their size.

The primary limitation of the work by Bullinger et al. [7] lies in its focus on the line, which while a
natural introductory setting for investigating fairness in transit stop placement, fails to adequately capture
the complexity of many real-world transportation networks. In this work, we address this limitation by
studying transit stop placement in general metric spaces.



To make things more concrete, we offer an example. Suppose there are six agents, and each agent 14
follows a route from a; to b;. The planner has a budget to construct three shuttle stops. Each agent derives
disutility from a transit stop placement equal to the sum of the agent’s walking distance to the stops they
use and their transit cost between stops. There are four candidate stop locations, ¢; through c4. Consider
the stop placements depicted in Figure la and Figure 1b, where the selected stops are indicated by stars.
We observe that the placement in Figure 1a fails to adequately represent the agent group {1,2,3,4}. Every
agent in that group derives greater disutility from the transit stop placement in Figure la than from the
placement in Figure 1b. This group constitutes two thirds of the population, and thus intuitively should
have two thirds of the decision power, i.e. be able to effectively decide two of the three stops.
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Figure 1: Transit stop placement example. Each travel route connects an agent pair (a;,b;), with six agents in
total (blue circles). There are four candidate stop locations, c¢1 to ¢4 (red squares). Panels (a) and (b) illustrate two
different placement choices, with the selected stops marked by yellow stars. Red arrows indicate the shuttle transit
routes.

In this work, we aim to identify algorithms which can provably guarantee fair transit stop placements
in general metric spaces. Since the provably fair algorithms introduced by Bullinger et al. [7] exploit the
particular structure of the line, we must take a different approach. We note that our problem shares
substantial overlap with fair centroid clustering [6, 8, 14, 17, 23, 29], which also involves selecting a prescribed
number of centers (or stops) for a given set of points while pursuing fairness guarantees. Indeed, the
application of a fair clustering algorithm to our previous example would certainly require the selection of
both ¢; and ¢4. This observation naturally raises the question of whether existing fair clustering algorithms,
backed by a rich body of research on fairness, can be adapted to achieve our fairness objectives in the context
of transit stop placement.

To what extent can fair clustering algorithms guarantee proportionally representative and fair
transit stop placements in general metric spaces?

The two settings differ, however, in that agents are associated with a pair of points in our model whereas
they are modeled as a single point in clustering, and thus clustering algorithms necessarily ignore potentially
useful information on agents’ preferences. Furthermore, clustering algorithms do not capture that agents’
preferences may also depend on their transit cost between stops. We would like to define transit cost flexibly
on instances defined on general metric spaces since walking and other transport infrastructure may not
necessarily align.!

Is it possible to devise algorithms which outperform clustering algorithms if we take a more fine-
grained view of agents’ preferences and flexibly account for agents’ transit times?

1For example, a footbridge may allow an agent to move between two points on foot faster than other infrastructure allows.



1.1 Owur Contributions

Our first contribution is a flexible model of transit stop placement in general metric spaces. In the model
of Bullinger et al. [7], transit times between stops are assumed to be proportional to the walking distance
between the two stops. Our model, at its most general, allows for significantly more general transit times,
requiring only that they abide by a distance function which satisfies the triangle inequality. As was done in
Bullinger et al. [7], we define an approximate version of justified representation, 5-JR, which requires that all
agents in a deviating group prefer the deviation by a factor 5 > 1. We also define a bi-criteria approximation
of core, (a, B)-core, in which the « factor strengthens the deviating group size requirement.

We first establish formal connections between centroid clustering and transit stop placement (TrSP) under
the assumption of negligible transit times. By reducing TrSP to clustering, we show that any clustering
algorithm satisfying p-Proportional Fairness (PF) can be used to guarantee a (2, p)-core outcome for TrSP.
Since the Greedy Capture algorithm gives a (1 4+ v/2)-PF solution in clustering, a direct corollary of our
theorem is that this algorithm in the context of TrSP, which we refer to as GC-TrSP, guarantees (2, 1+ v/2)-
core. We also prove that GC-TrSP satisfies (2 + v/5) ~ 4.24-JR, and that both of these bounds are tight.
In the reverse direction, we give a mapping from clustering instances to TrSP instances which demonstrates
that any (-Justified Representation (JR) algorithm for TrSP can be used to obtain a 235-PF solution for the
original clustering instance. This insight leads to an impossibility result: in general metric spaces, a JR (and
therefore, core) outcome is not guaranteed to exist. We improve on this impossibility by showing that no
TrSP algorithm can guarantee better than @ ~ 1.37-JR in general. To understand the limitations of our
reduction to clustering with respect to JR, we construct a TrSP instance for which no clustering algorithm
can guarantee better than 3-JR.

To surpass this barrier, we introduce a novel algorithm, the Expanding Cost Algorithm (ECA ), which
evaluates and selects stop pairs rather than singletons, and directly considers agents’ costs rather than mere
distances. We prove that ECA satisfies (1 4+ v/2) ~ 2.41-JR, again with a tight bound, thereby improving
on the approximation guarantee of every clustering-based algorithm. Strikingly, this approximation factor
holds for any travel times between stops that satisfy the triangle inequality. In contrast, no clustering
algorithm guarantees a constant factor JR approximation under such generality. Although ECA substantially
outperforms clustering algorithms in terms of JR approximation, it fails to satisfy («, 3)-core for any a, § > 1.

Given that GC-TrSP and ECA exhibit complementary strengths in approximating JR and the core, we
propose a new algorithm, A-Hybrid, which interpolates between GC-TrSP and ECA via a tunable parameter
A > 0. This parameter A controls the algorithm’s preference for selecting singleton or paired stops. We show
that A-Hybrid satisfies

VA2 +1 VA2 1 1
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)-core

A comprehensive picture of JR approximations is depicted in Figure 2 while the comparative performance
of GC-TrSP, ECA, and A\-Hybrid with respect to core approximations is summarized in Table 1.
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Figure 2: Overview of JR approximation ratios. The two shaded regions with diagonal lines indicate the lower
bounds for general algorithms and clustering algorithms, respectively. The points at 2.414 and 4.236 correspond
to the ECA and GC-TrSP algorithms. The performance of the A-Hybrid algorithm ranges between 3 and 4.236,
depending on the choice of the parameter .
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Lower Bound Upper Bound
GC-TrSP (2,14 V2) (Prop. 2) (2,14 v2) (Prop. 2)
ECA (v, p)-core for any v,p > 1 (Prop. 5) -

A-Hybrid (2, VAAHI2ALIF9AEL ) (Prop. 6) (2, YAHOAELEAEL) (Cor, 1)

Table 1: Comparison of Expanding Cost Algorithm (ECA) and Greedy Capture for TrSP (GC-TrSP) in terms of

approximation ratios for core in general metric space.

We note that the algorithm by Bullinger et al. [7], which provides JR in the line instance, is in fact also
a clustering algorithm on the line, in which setting it guarantees a PF solution. However, it can perform
arbitrarily poorly when the candidate centers do not align with data points. To address this, we propose a
new algorithm called ¢-dictator partition algorithm, which generalizes the algorithm by Bullinger et al. [7]
and satisfies PF in clustering on the line, and thus matches their (1,2)-core bound for TrSP on the line.
Lastly, we prove that a solution minimizing the total cost for TrSP in general metric space is NP-hard to
compute. We defer these results to appendices.

1.2 Scope and Assumptions

While our model is quite general, it does not fully encapsulate the problem of designing a public transporta-
tion network. A significant component of that task is route selection, i.e., the decision of which sequences
of stops will traversed by buses, trains, etc. That decision in turn affects transit time between stops. In
contrast, we focus on the placement of the stops themselves and treat transit times between stops as ex-
ogenous. As a result, our model is not well-suited to designing large-scale public transportation systems
wherein transit times make up a significant portion of agents’ costs. Instead, our model is more amenable to
scenarios in which either (1) a route (or set of routes) is set a priori and all candidate stops lie along these
routes, or (2) total travel times are dominated by walking rather than transit time, and thus do not depend
greatly on routing.

1.3 Related Work

The problem of transit stop placement has been extensively studied in the public transportation literature
[9, 10, 16]. For instance, Hossein Rashidi et al. [22] investigated the optimization of stop locations in transit
networks under elastic travel demand and budget constraints. They formulated the problem as a mixed
integer program and developed heuristic algorithms capable of solving large-scale instances. Ceder et al.
[11] addressed the challenge of bus stop placement in routes with uneven topography. They incorporated
topographical variation into three distinct mathematical models that account for walking speed, the attrac-
tiveness of access paths to transit services, and vehicle acceleration at stops. To tackle it, they proposed a
heuristic evolutionary algorithm to approximate optimal solutions.

Fair transit stop placement has received growing attention in recent years due to its critical role in
promoting equitable access to public transportation [25, 26]. For instance, Tedjopurnomo et al. [37] studied
the equitable public bus network optimization problem through a case study of Singapore’s bus system,
formulating efficiency and equity metrics and conducting exploratory experiments to evaluate their real-
world impact. Their work underscores the challenges of balancing fairness and efficiency in transit network
design. In a complementary direction, Najmi et al. [31] explored fairness and equity from psychological and
cognitive perspectives, highlighting how users’ perceptions and experiences shape their sense of fairness in
public transit. Matl et al. [27] wrote a comprehensive survey on equitable vehicle routing problems (VRPs),
reviewing various strategies to embed fairness into routing decisions. More recently, He et al. [21] examined



fairness in transportation network design from a welfarist perspective, focusing on selecting a subset of edges
in an undirected graph to optimize network performance while maintaining fairness considerations.

In this paper, we consider fairness notions inspired by the concept of core stability, a foundational idea that
has been extensively applied across various domains, including transferable utility cooperative games [33],
coalition formation [2], exchange markets [36], and two-sided matching [1]. Although it is typically viewed as
a stability concept, it is also amongst the strongest fairness notions in many social choice contexts, including
committee voting [24], fair mixing [4], and fair allocation [20].

Bullinger et al. [7] were the first to explore fairness in the transit stop placement problem. Their work
focused on the line metric. They presented polynomial-time algorithms for cost minimization and designed
algorithms with provable fairness guarantees, including justified representation (JR) and a factor-two ap-
proximation for core stability. Importantly, they note that “an important research challenge is to develop
a richer framework that can be used to reason about fairness in more realistic models of public transport.”
Motivated by this, we consider a more general setting in which agents and candidate bus stops lie in an
arbitrary metric space. In contrast to the positive results Bullinger et al. [7] obtained for the line, we will
show that in general, the cost minimization problem becomes computationally intractable, and a solution
satisfying JR need not exist.

The TrSP problem we study in this paper is closely related to the study of fairness in centroid selection
for clustering [6, 14, 15, 23, 29]. Chen et al. [14] initiated the study of fairness in clustering, introducing
the proportional fairness (PF) axiom, requiring that no “large enough” group of datapoints has an incentive
to collectively deviate to an unselected candidate center, an idea inspired by core stability. They showed
that outcomes satisfying reasonable approximations of PF are guaranteed to exist and can be computed via
the “Greedy Capture” algorithm. Following this, a substantial body of work has emerged on fairness and
proportionality in clustering. For example, Micha and Shah [29] extended the analysis to unconstrained
centroid candidate sets; Aziz et al. [6] proposed a fairness axiom targeting proportional representation; and
Kellerhals and Peters [23] established connections between fair clustering and committee voting, and analyzed
the connections between several of the axioms introduced in this literature. The TrSP problem studied in
this paper can be viewed as a variant of centroid selection, where centroids correspond to transit stops.
However, unlike standard clustering where each datapoint represents an agent, the TrSP model associates
two datapoints with each agent. In this work, we will highlight both the inherent connections and the
fundamental differences between these two problem domains.

2 Preliminaries

2.1 Transit Stop Placement Model

Let X be a set and d and d’ be two distinct distance functions satisfying the triangle inequality. The metric
space (X, d) represents walking cost> while the metric space (X, d’) represents transit cost. An instance of the
Transit Stop Placement (TrSP) model is defined by the tuple Z = (N,C,{60; }icn, k), where N := {1,2,...,n}
is a finite set of n agents, C is a set of m candidate transit stops, k is a positive integer, and 6; = (a;,b;)
denotes the endpoints between which agent i travels, where a;,b; € X. We denote by O(S) the multiset of
all endpoints associated with agents in a subset S C N. For simplicity, let © := O(N). A solution to a TrSP
instance is a subset of candidate transit stops Y C C. The solution Y is said to be feasible if |Y| < k. For
ease of exposition, we define d(i, X) = minjex d(1, j).
Given any feasible solution Y, the cost of agent i with type (a;, b;) is given by

¢;i(Y) = min {d(am b)), min_[d(a;,y1) +d'(y1,y2) + d(ya, bz)]}

Y1,Y2€Y

Intuitively, each agent ¢ minimizes her travel cost by either walking directly from a; to b;, or by walking
from a; to a transit stop y; € Y, taking the transit system from y; to another stop y2 € Y, and then walking

2A standard interpretation of the cost is travel time.



from yy to her destination b;. Unless otherwise specified, we adopt the assumption that d'(y;,y2) = 0 for
all y1,y2 € Y. This assumption, which we refer to as null transit times, captures scenarios where the cost
of using the transit system is negligible compared to walking. Critically, our central algorithmic result will
hold for arbitrary transit times.

The total travel cost of a solution Y C C is defined as c¢(Y) = > ,cyci(Y). We first remark that a
solution which minimizes total travel cost among all feasible solutions is NP-hard to compute, even in the
special case of null transit times. Since we are mainly focused on fairness in this work, we defer the proof to
Appendix A. This result marks a contrast between general metric spaces and the line, since the latter setting
admits a polynomial time algorithm for any transit times which are directly proportional to the walking
times [7].

Proposition 1. Unless P = NP, there is no polynomial time algorithm which computes a minimum cost
solution to the TrSP problem, even under null transit times, i.e., even when d'(i,5) =0 for all i,j € X.

We focus on the fairness axioms introduced by Bullinger et al. [7], both of which draw inspiration from
the study of core stability in various domains including multi-winner voting, participatory budgeting, and
fair clustering (see, e.g., [5, 12, 13, 19, 34, 35]). In the context of transit stop placement, core is grounded in
the principle that, given an instance with n agents and a budget of k, each agent is entitled to a %—proportion
of the budget. Toward this end, the core comprises the set of feasible imputations in which no coalition of
agents can all strictly improve their cost by using their budget on an alternative set of transit stops. That is,
a solution Y is in the core if for any subset of agents S C N and any transit stop set T C C with [S| > |T'|- %,
there exists at least one agent ¢ € S such that ¢;(T) > ¢;(Y).

Our other fairness axiom of focus, justified representation (JR), weakens core by restricting its attention
to deviations consisting of pairs of stops. That is, JR requires that any group of agents with size at least [27"1
should not be able to reduce their travel costs by deviating from solution Y to an alternative pair of stops.
A pair of stops is considered the minimal meaningful unit since no agent can derive benefit from a single
stop. Besides being significantly easier to compute, JR has another major advantage over core. Whereas the
complexity of checking core in our setting is unsettled, JR can be verified in polynomial time.3

As we will see, JR (and thus core) is not guaranteed to exist in our setting. As a result, we will study
multiplicative relaxations of both properties, which we will now introduce. For approximate JR, we require
that at least one agent in the group improve by no more than a factor S.

Definition 1 (5-Justified Representation (8-JR)). A solution Y C C is said to provide B3-JR if for every
subset of agents S C N with |S| > 27” and every pair of transit stops T C C,|T| = 2, there exists an agent
i €S such that 8- ¢;(T) > ¢;(Y).

For core, we additionally parameterize the size of a deviating group of agents using multiplicative factor
a.

Definition 2 ((a, §)-core). Let a,8 > 1. A solution Y C C is in the («, 8)-core if for every subset of
agents S C N and every transit stop set T C C with |S| > a - |T|- %, there exists an agent i € S such that
Bei(T) = e(Y).

When g = 1, the («, 1)-core aligns with the S-core approximation defined by Bullinger et al. [7]. The
(a, 1)-core represents a multiplicative size approzimation of the core, relaxing the requirement such that a
group of agents can deviate and establish |T'| transit stops only if its size is at least « times the number of
agents who “deserve” |T'| stops. Conversely, when o = 1, the (1, 3)-core introduces a relaxation on individual
cost, aligning with the notion of approximate Proportional Fairness (PF) in fair clustering [14].

2.2 Fair Clustering Model

We will now review the problem description and relevant definitions of fair centroid clustering. To avoid
notation confusion with the TrSP instance, we use a slightly modified notation. Similar to TrSP, clustering

3For further details, see Appendix C or Bullinger et al. [7, Appendix C.1].



instances consist of points in a metric space (X,d). A fair clustering instance is given by a tuple 7' =
(N',C', k') where N’ is a finite set of n/ datapoints, C’ is a set of m’ centers, and k' is a positive integer. A
clustering solution is a subset P C C’ of at most k' centers. We will draw and exploit connections between
our fairness concepts and the clustering fairness concept known as proportional fairness.

Definition 3 (p-Proportional Fairness (p-PF)). A clustering solution P C C' with |P| < k' satisfies p-

Proportional Fairness if, for all S’ C N’ with |S’| > Z—: and for all ¢ € C', there exists a datapoint i € S’
with p - d(i,c) > d(i, P).

Put differently, there should be no group of agents large enough to deserve one center that would all
prefer that center to their closest center under P, even when scaling their alternative distance by p.

Lastly, we introduce a mapping from instances of TrSP to instances of fair clustering. Given any TrSP
instance Z = (N, C, k, {0; }ien), we define a clustering instance Z¢ = (0, C, k) within the same metric space
(X, d). We call this the clustering instance induced by T, or simply induced clustering instance, when context
is clear. In words, the clustering instance induced by Z reinterprets the endpoints of agents in the TrSP model
as datapoints in a clustering instance and maintains the same candidate set and target selection number.
Notably, the set of feasible outcomes in the TrSP instance Z is identical to that in its induced clustering
instance Z¢. As a result, every clustering algorithm immediately yields an algorithm for TrSP instances by
the following simple procedure: given a TrSP instance Z, run the clustering algorithm on Z¢ and return the
output. In the next section, we will reason about the application of clustering algorithms to transit stop
placement.

3 Transit Stop Placement Meets Fair Clustering

In this section, we establish connections between the TrSP problem and fair clustering, highlighting their
underlying structural similarities and differences. We first show that clustering algorithms can be used to
approximate fairness in our setting.

3.1 Approximate Fairness by Reduction to Clustering

To establish that fair clustering algorithms can indeed be used to guarantee fairness in TrSP, we prove a
metatheorem which uses our reduction from TrSP to clustering. In particular, we show that, to guarantee a
(2, p)-core solution in TrSP, it is sufficient to apply a centroid selection algorithm that satisfies p-PF to the
induced clustering instance.

Theorem 1. Given a TrSP instance L, if there exists a feasible solution Y satisfying p-PF in the induced
clustering instance I for some p > 1, then Y is (2, p)-core solution for T.

Proof. Given any TrSP instance Z = (N,C,k,{0;}icn), consider the induced clustering instance Z¢ =
(0,C,k) and let Y be a feasible centroid selection satisfying p-PF. For any subset of agents S C N and
any subset of transit stops 7' C C with [S| > |T|- 2% in Z, let ©(S) denote the multiset of datapoints
corresponding to agents in S. Then |©(S)| =2 [S], and hence we have 1 - |©(S)| > |T| - 22. Define the set
Q:={j€0O(S):p-d4,T) >d(jY)} Since solution Y satisfies p-PF in Z¢ and |©| = 2n, it follows that
for any candidate center ¢ € T', the number of datapoints 7 € ©(S) such that p-d(j,¢) < d(j,Y) is strictly

less than 27” Therefore,
2n an 2n 2n
o) —1- L2 -2 =) 2R
Q1> 10(8)| — 171 22 > 1) 2~y 2 ). 2
Note that each datapoint in @ is an agent’s endpoint in Z and |Q)| > \T|2T" By the pigeonhole principle, there

exists an agent ¢* € S such that both a;« and b;» belong to Q. Hence, it holds that p - d(a;+,T) > d(a;«,Y)
and p - d(b;=,T) > d(b;=,Y). This tells us the following about the cost of agent i*:

p-ci»(T)=p-min {d(ai* ,0i«), min [d(a;,71)+ d(bi*,Tg)]}
T1,T2€



=min{p - d(a;,b;),p-d(a;-,T) + p-d(bi-,T)}

>min{p - d(a;,bix),d(a;,Y)+dbi,Y)} (. p-dlap,T)>d(aix,Y); p-d(bi=,T) > d(bi=,Y))
> min {d(a;«, b~ ),d(a;,Y) + d(bi=,Y)} (Fp=1)
= ¢+ (Y).

Therefore, for any subset of agents S C N and any subset of transit stops 7 C C with [S| > |T|- 22 in
Z, there always exists an agent i* such that p - ¢;«(T) > ¢;+(Y). This implies that the solution Y satisfies
(2, p)-core in Z. O

From Theorem 1, it immediately follows that (2,1 + v/2)-core solutions for the TrSP problem can be
computed using the clustering algorithm known as Greedy Capture [14]. When applied to TrSP instances
(through the reduction described in Section 2.2), we refer to this algorithm as Greedy Capture for TrSP
(GC-TrSP).

The algorithm works by uniformly growing balls around candidate transit stops and iteratively adding
stops whose balls capture a sufficient number of uncaptured endpoints. In more detail, each endpoint is
first marked “active”, and GC-TrSP smoothly increases radius r and iteratively “opens” stops which are
at distance at most r from at least (27”] active endpoints. Opened stops are added to the solution and
endpoints are deactivated as soon as they are contained in an opened ball. The algorithm terminates when
all agents are deactivated.* See Algorithm 1 for formal pseudocode.

Input: TrSP instance Z = (N,C, k,{0;}ien)-
Output: Solution Y.

1: Create Z¢ = (©,C, k), the clustering instance induced by Z.
2: Denote the distance ball of candidate ¢ € C with radius r by B(e,r) < {j € © : d(j,c) < r}.
3: Initialize 7 < 0, Y + 0; N« ©.

4: while N # 0 do

5:  Smoothly increase r.

6: while 3y e Y st. |B(y,r)NN|>1do

7: N «— N\ B(y,r)

8: while3ceC\Y st. [B(e,r) NN| > [22] do

9: Y<«+<YU {C}

10: N« N\ B(e,r)

11: Return Y.

Algorithm 1: Greedy Capture for TrSP (GC-TrSP)

In fact, as we will now show, it turns out that (2, 1+ +/2)-core is the best achievable approximation factor
for GC-TrSP and thus the analysis provided by Theorem 1 is tight. We defer instances proving tightness of
approximation to Appendix B.1.

Proposition 2. GC-TrSP algorithm (Algorithm 1) satisfies (2,1 + /2)-core. However, for any 8§, > 0,
there exists an instance for which GC-TrSP violates (2 — 6,1+ /2 — ¢)-core.

One of the apparent drawbacks of the core approximation obtained by Greedy Capture is that it strength-
ens the coalition size requirement by a factor 2. This effectively halves each group’s representative decision
power when considering deviations. It turns out that the coalition size requirement must be strengthened
to some extent in order for GC-TrSP to give any bounded guarantee with respect to core. In particular,

4We note that Greedy Capture may terminate before selecting k centers, an artifact that appears in some of our lower bound
arguments. This behavior can be avoided by deactivating exactly % (fractional) endpoints for each selected center. It is not
clear whether the choice of which endpoints to deactivate can be used to improve the bounds. Nonetheless, we also give lower
bound results like Proposition 4 which apply to all clustering algorithms.




it holds that GC-TrSP does not satisfy (1, p)-core for any p > 1.5 As a natural next step, we investigate
GC-TrSP with respect to JR, a property which maintains the proportional coalition size requirement but
restricts considered deviations to those consisting of pairs of stops. The following result shows that GC-TrSP
achieves a (2 + /5)-approximation to JR, and this bound is tight.

Theorem 2. GC-TrSP satisfies (2 + /5)-JR. However, for any € > 0, there exists an instance for which
GC-TrSP violates (2 + /5 — €)-JR.

Proof. Given any TrSP instance Z, let Y C C be the solution of GC-TrSP under Z. Assume, for the sake
of a contradiction, that Y fails to satisfy (2 + v/5)-JR. That is, there exists a group of agents S C N with
|S| > [22] and a pair of transit stops T = {71, 72} C C such that (2 + V/5) - ¢;(T") < ¢;(Y) for every agent
jes.

Without loss of generality, we assume that every agent ¢ € S travels from transit stop 71 to 72, walking
from their starting point a; to 7, and from 75 to their destination b;. Define

rp o= measx{max{d(aj, 71),d(bj, m2)}}
J

as the maximum distance between any endpoint of an agent in S and its closest of the two transit stops in
{71, 72}. Let i* € S be the agent that attains this maximum distance. Without loss of generality, assume
that this maximum distance is realized at the starting point a;«, i.e, rr = d(a;, 7).

We begin by considering the case in which the distance radius explored by GC-TrSP never reaches rp.
That is, GC-TrSP deactivates all agent endpoints, and in particular both of the endpoints of agent i*, with
a distance radius at most 7. In this scenario, we derive that ¢;«(Y) < 2-rp <2 ¢;«(T), which contradicts
the assumption that (2 +v/5) - ¢« (T) < ¢ (Y).

Henceforth, we focus on the case in which GC-TrSP does consider a distance radius of rp during its
execution. We begin by examining the subcase where Y contains one of the stops in 7. Without loss of
generality, we assume that 71 € Y and 75 ¢ Y. Since 7y is included in Y, all starting points a; of agents
in S are deactivated when the distance radius reaches at most rr. Note that for stop 79, if selected, could
deactivate [22] endpoints with radius r7. However, since 7, ¢ Y, there must exist some agent i’ whose
endpoint b;; is already deactivated by another transit stop, denoted y € Y, with a radius at most rr.
Consequently, we have ¢/ (Y) < d(a;, 1) + d(bir,y) < d(a;,71) + rr. With this inequality in hand, we now
proceed to establish an upper bound incurred by agent ¢* under the solution Y.

ci+(Y) = min_{d(a;-,y1) + d(bi=,y2)}

y1,Y2€Y
< d(ai=, 1) + d(bi-,y) (rmeY,yey)
< rp 4 d(bi-, 72) + d(72,bi) + d(bir, y) (- triangle inequality)
<3-rp+d(bir, ). (. d(b, 1) < rp,d(bir,y) < T1)

We next consider the minimum multiplicative cost improvement of agent ¢' and * under T

. Ci/(Y) Cix (Y) . d(ai/,Tl) +rr 3-rr —l—d(byﬂ'g)
<
e ( @) e (@)) =" @ m) +dlim)

< min T , 3-rr +d(bi, 72)
d(byr, m2) T
3413
=——

< m%((min(z, 3+1/2))

The second inequality holds because d(b;, 7o) < r7 and subtracting d(a;,71) from numerator and denomi-
nator weakly increases the resulting fraction. Therefore, we have % ~¢i+(T) > ¢;+(Y'), which contradicts
that (2 +V/5) - ¢;(T) < ¢;(Y) for every agent j € S.

5Consider an example with two agents and k = 3 on the unit interval. Suppose C = {0,1/4,1/2,3/4,1} and the voters
have endpoints (0,1/2) and (0,1). GC-TrSP selects {0,3/4}, causing each agent to incur a cost of 1/4. Note that the solution
{0,1/2, 1} is feasible and gives each agent a cost of 0.



The remaining subcase is when neither 71 nor 7 are included in Y. In this case, since 7, and 75 are
excluded from Y, we observe that there exists at least one agent ¢/ € S such that a; is deactivated by some
y' € Y with a radius at most rr and one agent i’ € S such that b;» is deactivated by some y” € Y with a
radius at most rr. We next upper-bound the cost incurred by agents i*,4’, and 7"/ under solution Y.

For agent *, we have

e (V) < d(ag,y') + d(bi,y")
<d(asp,71) +d(m1,a:) + d(ay,y') + d(bp, 72) + d(T2, bi) + d(byrr, y")
<3-rr+ d(bi*,Tg) =+ d(Tl, aif) =+ d(TQ, biw).
For agent ', we have
< d(ay,y") + d(by,y")
< d(ay,y") + d(byr, m2) + d(2,bi) + d(bjr, y")
<2-rp+ d(bi/,’rg) —+ d(’TQ, bi//).

CZ()

We obtain the upper bound for agent i” in an analogous fasion to the previous bound:
Ci//(Y) <2-rp+ d(ai//,’Tl) + d(Tl, ai/).

For ease of expression, we denote © = d(a;,71) and y = d(72,b;#). With the upper bounds in hand, we
consider the minimum multiplicative cost improvement of agents {i*,4’,i"} as follows.

min 6 o (Y) o (Y)
C;r (T) C;r1 (T) Ci* (T)
“mi <2 crp+dby, ) +y 2-rr+dlap, 1) +x 317+ d(bis, T2) —l—x—l—y)

X +d(b,’/,7'2) ’ d(awﬂj) +vy ’ rT —|—d(bi*,7'2)
. <2'7“T+y 2-rr+x 3'7”T+x+y)
<min , , .
€ Yy rT

To optimize the above expression. We consider

2 2 2 2
min ( TTer, rT+x’3+x+y> < min ( TT+y, TT+I,3+I+y)

T Y T T x y rr

2 2
— nin (W 54 w)
T, xZ rT

2
< max <min (2q +1,3+ >>
q>0 q

=2+ /5.

TT,T,Y

This implies that min (C: g;, 2'/’/ g;7 ZE}T/S) < 2 ++/5, which contradicts that (2 +v/5) - ¢;(T) < ¢;(Y) for

every agent j € S. We conclude that Greedy Capture for TrSP (Algorithm 1) satisfies (2 4 v/5)-JR. For the
complementing lower bound, see Section B. O

3.2 Fairness Lower Bounds

In this section, we contextualize the JR approximation obtained by GC-TrSP (Theorem 2) by establishing
lower bounds on JR, both in terms of clustering algorithms and general existence. In contrast with the line
metric, where JR is guaranteed to exist [7], we show that a solution satisfying 1.36-JR is not guaranteed
to exist. We will begin by giving a reduction from clustering to TrSP which easily shows that JR is not
guaranteed to exist.
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Given any fair clustering instance Z' = (N’,C’, k'), where |[N’| = n and |C’| = m, we construct a
corresponding TrSP instance as follows. We create two identical copies of Z’, denoted by Z® = (N*,C* k')
and Z° = (N® C° k'), and place them at a sufficiently large distance from each other in a new metric space.
Denote N* = {ay,as,...,a,} and N® = {by,bs,...,b,}. We define the corresponding TrSP instance as
7 = ([n],Cc*UCY, (aj, bi)icpn)r k= 2K').

Lemma 1. Given a clustering instance T' = (N',C' k'), if there exists a solution Y satisfying B-JR in the
corresponding TrSP instance IT for some 3 > 1, then there exists a solution Y C Y, |YC| < k' such that
Y satisfies 23-PF in I'. When N' NC' =0, there exists € > 0 such that YC satisfies (23 — €)-PF in T'.

Proof. Given a clustering instance Z' = (N”,C’, k'), consider the corresponding TrSP instance Z7 = ([n],C*U
c®, (a, bi)ie[n]7k = 2k’) that results from the reduction described above.

Let Y be a 8-JR solution of Z” and let Y, = Y NC* and ¥, = Y NC®. We first observe that, since
points in C* and N® are an infinite distance from points in C® and N?, it holds for each agent 4, that
¢i(Y) =d(a;,Y,) + d(b;,Ys). Moreover, as we know that |Y| < 2k, it follows from the pigeonhole principle
that either Y, or Y} has a size of at most k’. Without loss of generality, we assume |Y,| < k.

Consider an arbitrary set of datapoints S" C N’ with size [S'| > 7% and an arbitrary candidate center
7 €C'. Let 7, and 73, denote the copies of 7 in C* and C?, respectively. Let S denote the agents in the TrSP
instance Z7' corresponding to the endpoints S’ and note that |S| = |S’| > & = 22. Since Y satisfies 5-JR,
there exists at least one agent ¢ € S such that

B-ci({Ta, m})
= B (d(a;,7q) + d(b;, 7))

(V)

>c
> d(ai, Ya) + d(bi, Yy).

Notice that d(a;, 7,) = d(b;, 7») due to the construction of our reduction. This implies that
2- Bd(ai,Ta) Z d(ai,Ya) + d(bl, YL) Z d(ai,Ya). (1)

It follows that for any arbitrary group of datapoints S” C N’ with size |S’| > {7 and candidate center 7 € C’,
there exists a datapoint j € S’ such that 28 - d(j,7) > d(j, Ya). Thus, Y, is a 23-PF solution to the original
clustering instance Z. .
Suppose that N NC = 0. Let ¢ = mln?‘/e”":;iill Z((Z*’TTZ)
distances between agents and candidate centers in the clustering instance. Note that these ratios are well-
defined and strictly positive for all agent-candidate pairs since all distances are strictly positive by our
assumption. Then Equation (1) tells us that (28 —¢) -d(i,7) > 26 -d(i,7) — d(i,Ys) > d(i,Y,), showing that
Y, satisfies (25 — ¢)-PF for € > 0. O

be the minimum ratio between any pair of
maxixeN/

It follows easily from Lemma 1 that a solution exactly satisfying JR is not guaranteed to exist®. In fact, we
are able to improve on this bound by constructing an instance for which a solution satisfying (1+2‘/§ —e)-JR

is not guaranteed to exist for any € > 0.

Proposition 3. For any € > 0, there exists a TrSP instance for which no solution satisfies (1+2‘/§ —¢)-JR.

Proof. Consider a TrSP instance with 3 agents, 6 transit candidate stops, and k = 3. Distances are specified
in the following table. We first observe that the endpoints and stops respect the triangle inequality and
are partitioned into two distinct regions, separated by an infinite distance. Within each region, the internal
distance structure remains identical in the metric space. We note that the TrSP solutions {1, 7,73} and
{74, 75,76} fail to provide any approximation of JR, as all three agents have strong incentives to deviate to
any alternative solution that selects at least one transit stop from each region. Such a deviation reduces
their cost from infinity to a finite constant.

6To see this, assume that there exists an algorithm that always outputs a JR solution. By Lemma 1, this would imply the
existence of an algorithm that satisfies (2 — €)-PF in clustering for any instance in which A’'NC = . However, Chen et al. [14]
give a clustering instance in which N’'NC = 0 and no (2 — £)-PF solution exists for any ¢ > 0, thereby yielding a contradiction.
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d() ay a9 as bl b2 b3

1 2443 V3 1 00 00 00
T V3 1 2+ \/3 [ee) 00 00
T3 1 2+43 V3 00 00 00
T4 00 00 00 2443 V3 1

Ty 00 00 00 V3 1 2+3
T6 0 0 00 1 2+ \/3 \/§

1+v3

Table 2: An Instance in which all solutions fail (=55~ —¢)-JR

Due to the identical distance structure in the two regions, without loss of generality, it suffices to consider
two TrSP solutions: Y7 = {71, 72,76} and Y2 = {71, 72, 74}. To see this, note that 74, 75, and 74 mirror 7, 7o,
and 73, respectively, and that one of these groups will have exactly one selected stop. Thus, we only need to
consider two types of solutions: one in which that selected stop is the counterpart of a selected stop on the
other side (Y2), and one in which it is not (¥7).

Recall that [22] = 22 = 2. For the solution Y;, consider the deviating coalition S; = {2,3} and the
alternative set of transit stops Ty = {71, 74}. For agent 2, we have c3(Y1) = d(ag, 72)+d(ba, 76) = 14+2+/3 =
3+ 3 and (1) = d(ag, 1) + d(bs, 74) = V3 + v/3 = 2/3. Hence, we obtain (1553 — ). ey(T1) < ea(Y1).
Similarly, for agent 3, we compute c3(Y;) = 1 + /3 and c3(T1) = 2, yielding (# —g)-c3(Th) < c3(Y1).
Thus, Y; violates (142 — ¢)-JR.

Now consider the solution Y3, with deviating coalition Sy = {1,2} and alternative transit stops To =
{72, 75}. For agent 1, we have ¢;(Ys) = d(ay, ) + d(b1,71) = V3+2+ V3 = 2+ 2V3 and ¢(Tz) =
d(a1,7) + d(by,75) = 2v/3; For agent 2, we compute c2(Yz) = 1 + /3 and ¢o(Ts) = 2. Tt follows that

min{cl(Yg) CQ(YZ)}mm 2423 1+v3 |  1+V3
B 23 7 2 2

Therefore, Y5 also fails to satisfy (1+2\/§ —¢)-JR. O

The lower bound stated in Proposition 3 leaves open the possibility that other algorithms can signifi-
cantly outperform GC-TrSP with respect to approximate JR. Recall that GC-TrSP proceeds by reducing
TrSP instances to clustering instances, by reinterpreting all agents’ endpoints in TrSP as datapoints in clus-
tering, thus forfeiting information tying points to agents. Since our fairness properties ultimately consider
agent costs, it seems likely that any clustering approach to our problem will leave significant room for im-
provement. The next result formalizes this intuition by showing that no clustering algorithm can achieve an
approximation ratio better than 3 with respect to JR.

Proposition 4. For any € > 0, there is no clustering algorithm which satisfies (3 — ¢)-JR for the TrSP
problem.

Proof. Fix € > 0. To prove the statement, we first define a clustering instance Z¢ = (©,C, k) and then
show that, no matter which solution Y the clustering algorithm returns, there exists a TrSP instance Z for
which (1) Y violates (3 —¢)-JR and (2) Z is the clustering instance induced by Z. We begin by defining the
clustering instance Z¢ with 12 datapoints, 9 candidate centers, and k = 6. Specifically, © = {1, 22, ..., 212},
C = {x1,x9,x3, T5, Tg, T7, T9, T10, L11 }, Wwhere all the datapoints and centers are partitioned into three groups,
each of which are separated from each other by a sufficiently large distance. We represent the instance
graphically by Figure 3.

Note that £ = 6 and there are three candidate centers in each separated group. Since the internal
structure in each separated group is exactly the same, we can limit our attention to two cases: (1) there is
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x2 Z6 z10

1 x4 3 5 g z7 g T12 11
Figure 3: Graphical representation of clustering instance Z¢. Each edge in the graph has unit length 1 and distances
between pairs of points are given by the shortest path between them (infinite distance if the pair is not connected).

Datapoints which are candidate centers are labeled by blue rectangles.

a group with zero candidate centers selected; or (2) each group has at least one selected candidate center,
and there are at least two groups with at most two centers selected from each.

Case (1). Without loss of generality, suppose that no center is selected from the first group, i.e., suppose
Y C {x5,x6, 27,9, T10,711}. Let T be a TrSP instance in which 6; = (z1,25) and 03 = (x4, x5) and the
remaining datapoints are arbitrarily assigned as the remaining four agents’ endpoints. It is clear that Z¢ is
the clustering instance induced by Z. Let S = {1,2}. We observe that the agent group S is large enough
to deserve two transit stops, i.e., | S| =2 = 2. Consider an alternative set of stops 7' = {x1,z5}. For each
agent i € S, it holds that ¢;(Y) = oo and ¢;(T)) = 1. Therefore Y gives an arbitrarily bad approximation of
JR under this instance.

Case (2). Without loss of generality, we assume that the first two groups have at most two centers
selected from each and that these centers are Y = {x1,x2,25,26}. Note that selecting less centers from
either group could only help us in finding a deviating coalition so we are analyzing the worst case. Also,
while Y could also contain centers from the third group, this is irrelevant to the present case since we will
not consider any endpoints in the third group when constructing our deviating coalition. Let Z be a TrSP
instance in which 8; = (x4,27) and 03 = (z3,2s) and the remaining datapoints are arbitrarily assigned as
the remaining four agents’ endpoints. Again, note that Z€ is the clustering instance induced by Z. Let
S ={1,2} and T = {x3,z7}. For each agent i € S, i prefers stops in T than Y as ¢;(Y) =2+ 1 =3 and

¢i(T) =1+ 0 =1, which gives us ig; =3 > 3 —¢. This concludes the proof. O

We close this section with a remark showing that clustering algorithms, besides exhibiting a JR lower
bound of 3, also fail to provide any guarantee with respect to JR under instances with arbitrary transit cost
functions. In the next section, we will propose an algorithm which attains a JR approximation below the
lower bound stated in Proposition 4, and show that this holds for arbitrary transit cost functions.

Remark 1. When allowing for arbitrary transit cost functions d'(-), no clustering algorithm can achieve a
constant-factor approzimation with respect to JR. To see this, recall the example in the proof of Proposition 4

and additionally define d'(y1,y2) = H > 0 and d'(11,72) = 0. For the deviation coalition {1,2,3,4}, as

d'(y1,y2) = H tends to infinity, it follows immediately that for every agent i € S, we have ?EST/; — 00, which

implies arbitrarily bad approximation.

4 Expanding Cost Algorithm

In the previous section, we leveraged connections with centroid clustering to show that GC-TrSP approxi-
mates JR within a 2 4+ /5 factor. Our lower bound on approximate JR existence of 1+T‘/§ then leaves an
intriguing gap. From Proposition 4 and the ensuing remark, we know that clustering algorithms cannot hope
to improve this factor beyond 3, and furthermore, are not robust to general transit cost functions. Given
the gap and the shortfalls of the clustering approach, a natural question arises: can we design algorithms
that achieve better approximations to JR and are robust to non-zero transit cost functions? We answer
this question affirmatively by proposing the novel Expanding Cost Algorithm (ECA), which fully utilizes
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the agent (as opposed to endpoint) information to guarantee a 1 + V2 &~ 2.4 approximation to JR under
arbitrary transit cost functions.

ECA draws inspiration from the Greedy Capture approach of uniformly growing balls. However, instead
of growing distance-based radii around individual candidate stops, it grows what we refer to as the cost
radius, centered on pairs of stops. Specifically, ECA begins by enumerating all possible pairs of candidate
transit stops. For each pair T' = {71, 72}, it uniformly expands a “cost ball”, that is a set that includes all
agents whose total cost when using T is at most r.” The algorithm iteratively “opens” these cost balls, and
adds the associated stop locations into the solution. Agents are considered active if they are not yet covered
by any previously opened ball. In each iteration, the algorithm selects and opens any ball that covers at
least [27"1 active agents. We formally describe ECA in Algorithm 2.

Input: TrSP instance Z = (N,C, k,{0;}ien)-
Output: Solution Y.

1: Initialize r < 0, Y < 0, N < O.

2: while N # () do

3:  Smoothly increase r.

4:  while 3i € N such that ¢;(Y) <r do

5: N« N\ {i}

6:  while 3 {r,72} CC,{r, 2} Y and 3 S C N, |S| > fQT"L such that Vj € S, ¢;(Y U{m,m}) <r
do

7 Y(—YU{Tl,TQ}

8: N+ N\S

9: Return Y.

Algorithm 2: Expanding Cost Algorithm

We next prove that ECA achieves a tight (1 + v/2) ~ 2.414-JR guarantee, and moreover, that this
guarantee holds for any arbitrary transit cost function d'(-) > 0.

Theorem 3. For any arbitrary transit cost function d’(-) > 0, ECA satisfies (1++/2)-JR. However, for any
e > 0, there exists an instance with null transit costs for which ECA wiolates (14 /2 — €)-JR.

Proof. Given any TrSP instance Z, let Y C C be the solution computed by ECA. Suppose, for a contradiction,
that Y violates (14 v/2)-JR. It follows that there exists a group of agents S C N with S| > [22] and a
pair of transit stops 7' = {71, 72} C C such that (1 + v/2) - ¢;(T) < ¢;(Y) for all j € S. We first observe that
for each agent j € S, it must hold that ¢;(T) < d(aj;,b;), since otherwise ¢;(Y) < ¢;(T). In other words,
every agent in S uses the transit stops in 7" for their route. Without loss of generality, for each agent j € .5,
denote a; as the endpoint that uses stop 71 and b; as the endpoint that uses stop 7.

Let rp = max;cg ¢;(T) be the maximum cost to any agent in S incurred by using transit stops T and let
i* be the agent in S that realizes this maximum. That is, ro = d(a;+, 71) + d' (11, 72) + d(b;, 72). If the cost
radius considered by ECA never reaches r1, then ECA returns stop placement Y covering all the agents in
N with a cost radius smaller than 77, which means that ¢;«(Y) < ¢;«(T), yielding a contradiction.

The other case is that ECA does consider a cost radius of r7 at some point during its execution. In this
situation, ECA must add some transit stop pair which gives some agent in S a cost upper bounded by r
before it continues smoothly increasing the cost radius. To see this, consider that otherwise ECA will add
the pair T = (71, 72) into the solution as [S| > [22] and ry = max;cs ¢;(T). Therefore, there exists an agent
i € S with ¢;(Y) < rp. We next prove an upper bound on the cost of ¢* under solution Y. In particular, we
show ¢+ (Y) < 2-rp + ¢;(T) by case analysis on agent 4’s cost under Y.

Case (a). ¢;(Y) = d(a;, b;), i.e., agent ¢ walks under Y. We prove the statement as follows:

Cix (Y) S d(al* s bl*)

TWe note that what we refer to as cost balls are not in fact balls in the geometric sense. To see this, note that an agent can
be located infinite distance from each stop in 7" but still have low cost for T if it is low cost for them to walk. We use the ball
terminology nevertheless as it lends a natural interpretation to ECA, and especially the algorithm we introduce in Section 5.
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< d(aj,71) 4+ d(71,0;) + d(a;, b;) + d(b;, 72) + d(72, b;x) (. triangle inequality)
< (d(ap, 1) + d' (11, 72) + d(72,bi+)) + (d(71, a3) + d' (11, 72) + d(bi, 72)) + d(as, b;)

(. d'(1,7m2) =2 0)
= ¢ (T) + ¢;(T) + d(ay, b;) (-VieS ¢(T)=da,n)+d(m,m)+dr,b))
= ¢+ (T) + ¢i(T) + ci(Y) (o (YY) =d(ai, b))
<2-rp+¢(T). (e (T)=rr,ci(Y) < rp)

Case (b). ¢;(Y) < d(a;,b;), i.e., agent i uses the transit system under Y. Let (y1,y2) denote the pair
of transit stops that agent ¢ uses for minimizing her traveling cost, i.e., (y1,y2) = argmin, ey d(a;,y) +
d'(y,y') + d(b;,y'). The upper bound follows from a similar argument to the previous case.

ci(Y) < d(ag,y1) + d'(y1,y2) + d(bi=, y2)
< (d(ag,71) +d(m1,ai) + d(ai, y1)) + (d(bir, 72) + d(72,b;) + d(bi,y2)) +d' (Y1, y2)

(.- triangle inequality)
< ci(T) + ¢i(T) + (d(ai, y1) + d(bi,y2)) +d'(y1,y2) (Vi€ S e(T) < d(ai,m)+d(r2,b;))
=¢;«(T) + ci(T) + ci(Y) (e (Y) =d(ai,y1) + d'(a;, b;) + d(bi, y2))
< 2-rp+¢(T). (o ep(T)=rr,c;(Y) < rp)

Lastly, with the upper bound of ¢;(Y") in hand, we consider the minimum multiplicative cost improvement
of agents ¢ and ¢* under T

o (S ) 2o iy )

< max(min(z,2 +1/2)) = 14+ V2,

220

which contradicts that (1 +v/2) - ¢;(T) < ¢;(Y) for all j € S. O

In light of the theoretical limitations of clustering algorithms (see Proposition 4 and Remark 1), Theorem 3
establishes two clear advantages of ECA over all clustering algorithms: a superior approximation to JR, and
robustness of this approximation factor to arbitrary transit cost functions.

To do so, ECA explicitly considers pairs of stops at a time, and in this way, assigns agents to routes
as it goes, rather than simply assigning endpoints to stops. While this approach outperforms clustering
algorithms in the sense of satisfying coalitions who all desire the same pair of stops, those guarantees do not
extend to coalitions who prefer to deviate to larger sets of stops. Indeed, as we will now show, the approach
of ECA is too myopic to guarantee any bounded approximation to the core.

Proposition 5. For any v,p > 1, there exists a TrSP instance in which ECA fails (v, p)-core.

Proof. Fix arbitrary v,p > 1 and fix an integer 7 > 2. We define z = [-75
instance Z = (N, C, {60;}ien, k) where

-y + 1] and construct a TrSP

2
|IN| = %,\ﬂ =22 and k= 2% — 2.

The instance is based on a complete graph K, with z vertices, where each vertex i € [z] represents a
candidate transit stop 7;. For every pair of distinct vertices ¢,j € [z], the distance between 7; and 7; is
assumed to be infinite. Along each of the edges (i,j) of K, there are r agents whose endpoints lie on that
edge. Additionally, there are two extra candidate stops, denoted by 7; ; and 7;; located on the edge. To
illustrate, consider the edge between 7 and 7o, pictured in Figure 4. For the edge between 7 and 75, there
are two extra candidate stops 712 and 7o1. All of these 4 candidate stops are marked as blue circles. On this
edge, there are r agents with travel endpoints located along the line. Specifically, for agents 1,2,...,7 — 1,
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T1 1 T21 1 1 T12 1 T2

ag,...,Qr-1 ar by bi,...,br—1

Figure 4: One edge in the complete graph K, with endpoint vertices 1 and 2

the starting point is at 71, and terminal point is at 7. Agent r has a starting point at a, and a terminal
point at b,. All endpoints are marked as red squares.

The total number of agents is n = r - 222 since there are 221

5 >— edges in K, with r agents placed on
each edge. The total number of candidate transit stops is z + z(z — 1) = 22, which includes the z vertices
of the complete graph and two additional stops per edge. Given k = 22 — 2, we have [2?”1 = r. According
to the execution procedures of ECA, when the cost radius reaches 2, each cost ball centered around a stop
pair {7, 7;;} will capture all r agents on the corresponding edge (4, j). Therefore, ECA outputs the solution
Y = Ui,je[z]:i;éj{Tij’ 7;i }, which contains 2 - @ = 22 — 2z = k stops and is thus a feasible solution. Now,
consider the subset of agents S whose endpoints are on the vertices of K,, that is, excluding agent r on each
edge. We have |S| = # -(r—1). Let T = {7y, 72,...,7.} be a deviation with |T'| = z. For each agent
1 € S, since both endpoints coincide with stops in T, it holds thatc;(T)) = 0. On the other hand, under ECA
solution Y, all agents in S incur cost ¢;(Y) = 2. Recalling that z = [ - v + 1], we see that

r—1
z(z—1)-(r—1)
S| 2 r—1
= = (z=1)> .
T ey 7 eYEr

Therefore, in this instance, under the ECA solution Y, there exists a group of agents S and a solution T’
such that [S| >~ - |T'| - %, and for every agent i € S, p-¢;(T) = 0 < ¢;(Y), which implies that ECA fails to
satisfy (v, p)-core for any 7, p > 1. O

5 AHybrid: Balancing Core and JR Approximations

As we saw in Section 2.2 and Section 4, ECA guarantees the best-known approximation to JR despite
performing arbitrarily poorly with respect to core, while GC-TrSP obtains a worse approximation to JR but
guarantees a constant-factor approximation to core. In this section, we present an algorithm, parameterized
by A € [0, 1], which effectively navigates the tradeoff between JR and core delineated by ECA and GC-TrSP.®

Intuitively, this algorithm integrates the decision-making principles of both GC-TrSP and ECA by con-
currently simulating both algorithms and considering both individual transit stop candidates and pairs of
stops. We call it the A-Hybrid algorithm and give a formal description in Algorithm 3. In essence, the
parameter \ allows tuning between ECA and GC-TrSP by controlling the rates of growth of the respective
“radii” of each algorithm relative to each other. Specifically, A encodes the ratio between the rate of growth
of the distance radius (GC-TrSP radius) and the cost radius (ECA radius). If the rates of growth are close
to equal (A close to 1), the algorithm is closer to GC-TrSP since as the distance radius will likely dominate
stop selection. On the other hand, as A approaches 0, the distance radius grows much slower than the cost
radius, and the algorithm moreso mimics the behavior of ECA. We remark that the 0-hybrid algorithm is
not equivalent to ECA. To see this, when A = 0, note that when given instances where 27” endpoints are
located at the same position, the 0-hybrid algorithm will deactivate these endpoints immediately, as they
are already within distance radius zero. In contrast, this location is not guaranteed to be selected by ECA
when no pair of stops with 0 cost exists.

In the remainder of this section, we will show that the A-Hybrid algorithm offers a way of smoothly
navigating the tradeoff between JR and core created by ECA and GC-TrSP. Specifically, we show that

8The tradeoff we remark on here is purely between these two algorithms. Theoretical evidence of such a tradeoff, for example
showing the impossibility of algorithms which guarantee a-JR and (3, ~)-core for some «, 3,7, is an interesting direction for
future research.
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Input: N, {0;}ien, M, k, A
Output: Y.

1: Initialize 7 < 0, Y < 0.

2: Let © be a multiset including all the endpoints of agents in N.

3: while © # () do

4:  Smoothly increase 7.
while 3 {a;,b;} € © such that ¢;(Y) <r or 3 e; € © such that d(e;,Y) < A-r do

© 0\ {a;,b;} or © < O\ {e;}

while 3 (11,72) € M?\ Y% and 35 C N, |S| > [32], such that V j € S, (1) {a;,b;} C ©; and (2)
¢;(YU{r,m}) <rdo

8: Y(—YU{Tl,TQ}

9: O «— @\{ai7bi}ies
10: while3 € M\Y and 3 EC O,|E| > [22], such that Ve € E, d(e, Y U{m3}) < \-7 do

&
11: Y+<YU {7’3}
12: O+ 0\FE
13: Return Y.

Algorithm 3: A-Hybrid

A-Hybrid satisfies

NS CEST e VT OATI LA+ 1
A+3+ A2+ 0)\+9—JRand(2, A +6)\2—|;\ + A+ J-core

where the JR approximation upper bound holds for A € [0,1] and the core approximation ratio holds for
all A € (0,1]. Figure 5 plots the fairness approximations obtained as a function of X, showing that, as A
increases, the approximation ratio of JR worsens while that of core improves, as expected.

10
JR

core

W~ D oo

Approximation ratio

N\

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5: Parameter X € [0,1]. Red solid line represents the JR approximation ratio of w and blue

AZ46A+1+A+1
2X

dashed line represents the parameterized function of core approximation.

5.1 JR analysis of A\-Hybrid

Parameterized by A € [0, 1], we begin by analyzing the extent to which the \-Hybrid algorithm approximates
JR. Building on the ideas underlying the JR analysis of the GC-TrSP algorithm and ECA, we establish that
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the A-Hybrid algorithm achieves a A+3+5VA7+10A+9 W—approximation of JR. As X approaches 0, the A-Hybrid
algorithm aligns more closely with ECA, thereby attaining a stronger approximation of JR. Conversely, as A
approaches 1, the algorithm shifts towards the behavior of GC-TrSP, which yields a weaker JR approximation
but, in turn, provides a stronger guarantee with respect to core approximation (see the next subsection).
For ease of exposition, for the remainder of the section, we will refer to the selection process in lines 7-9 as
the “ECA loop” and the selection process in lines 10 -12 as the “GC-TrSP loop”.

Theorem 4. \-Hybrid satisfies AE3FVAF10A49 W-JR, where X € [0,1], and this bound is tight.

Proof. Let Y C M be the transit stop solution returned by A-Hybrid. Note that A+3FVAT+10A+9 “\;"’W) > 3 on

the interval [0,1]. Suppose for a contradiction that Y violates AE3FVAZF10A+9 “\22+10’\+9—JR. That is, there exists a
group of agents S C N, |S| > [2?"], and pair of transit stops T C M such that for every agent i € S,

at3+vAc+I0A+9 M;JFW’ - ¢;(T) < ¢;(Y). Denote the two stops in T by 71 and 7». For each agent i € S, there is a
matching between their endpoints and stops 71, 7. Without loss of generality, for each agent i € .S, denote
a; as the endpoint that uses stop 71 and b; as the endpoint that uses stop 72. Let rr = max;eg ¢;(T) be the
maximum cost of any agent in S when using transit stop pair T = {7y, 72}. Let * be an agent in S that
realizes this maximum distance, i.e., rp = ¢;«(T).

We first consider the case when the parameter r never reaches rp. That is, all endpoints are deactivated
either by the GC-TrSP loop with a distance radius at most A\-r7 or by the ECA loop with a cost radius at most
rr. Consequently, we have ¢;- (Y) < max(2X-rp,77) < 2-¢;+(T), contradicting that A=3+VA 10349 “\;er)”rg-ci* (T) <

We next consider the case in which the parameter r reaches rp (i.e., the GC-TrSP loop reaches distance
radius A - rp and the ECA loop reaches cost radius r7). Notice that the algorithm reaches radius parameter
ry but does not select (71, 72). This implies that either (a) an agent in S, or (b) an endpoint of an agent in
S, has already been deactivated during the execution of the algorithm.

Case (a). There exists an agent j € S such that j is deactivated by some pair of transit stops {y1,y2} C Y
in the ECA loop with a cost radius of at most rr. Therefore, it holds that ¢;(Y) < rp. For agent i*, we
have

Cix (Y) S d(ai*ayl) + d(bi*ayQ)
< d(a;, 1)+ d(11,a;) + d(aj,y1) + d(bi, 72) + d(72,bj) + d(b;, y2)
<2-rp+¢;(T).

The minimum multiplicative cost improvement for agents i* and j is:

n(cj(Y) ci*(Y)> <min( Ty 2-rT+cj(T)) <max(min<z,2+i>) <1443,

¢j(T)" ¢i=(T) c(T)’ rr 220

again contradicting that AF3FVAZ+10A+9 W ;) (T) < ¢ (Y) for all ¢ € S.

Case (b). There exists an endpoint of an agent j € S which is deactivated by some singleton transit
stop candidate y; in the GC-TrSP loop with a distance radius at most A - rp. The tougher subcase is that
in which 7 ¢ Y. Notice that 75 can deactivate |S| > % terminal endpoints for agents in S with radius at
most r7, but is not selected by the algorithm. Hence, there must exist some selected transit stop y2 € Y
which deactivates at least one terminal endpoint of some agent in S with radius no greater than r,. Denote
the corresponding agent and endpoint by j' and b;,. We first consider the cost of agent j under Y,

cj(Y) < d(aj,y1) + d(bj, y2)
< XN-rp+ d(bj,TQ) =+ d(TQ,bj/) + d(bj/,yg)
< (/\ + 1) “rT + d(bj,Tz) + d(TQ,bj/).

Similarly, we consider the cost of agent j' under Y,

ci(Y) < d(ajr,y1) + d(bj, y2)
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< d(aj'77—1) + d(T17aj) + d(aj>y1) + d(bj’7y2)
S (/\ + 1) - T+ d(Thaj) + d(aj/,ﬁ).

We next focus on agent i* and show the following upper bound:

i+ (Y) < d(ai=,y1) + d(bi=, y2)
<d(a;+, 1)+ d(11,a;) + d(a;, y1) + d(bi-, 72) + d(72,b5:) + d(b;r, y2)
<rp+d(r,a;) + X rp+d(1,bj) + 11
<(A+2)-rp+d(m,a5) + d(m2,b).

To clarify the expression, let d(71,a;) be x and d(bj/, 72) be y. With these upper bounds in hand, we derive
the minimum multiplicative cost improvement of agents {i*, j,j'} under T.

n<cj(Y) ¢ (Y) Ci*(Y))
(1) ¢;(T)" ¢ (T)
<min(()\+1)'TT+d(bj772)+y A+1)-rp+ax+d(ajy,m) (A+2)~rT+x+y>

T+ d(bj, 72) 7 d(aj, 1) +y ’ rT
<min<()\+1)'TT+y7 ()‘+1)'TT+$7 ()\+2)-rT+a:+y).
X Y T

To optimize this expression, we consider

<()‘+1)'7"T+y (A+1)~7‘T+$7()\+2)+x+y>

min ,
TT,Y,% X Yy rT
A+1 2
< min (1+<+) ,(A+2)+ x)
Sl z rT
. 2
<max |(min |14+ A+1)q,(A+2)+ -
q>0 q
A3+ VAT HI0A+9
— 5 7
where it holds with equality when ¢ = /\+1+2V(’\1J{10/\+ . Therefore, we conclude that for some agent in

i € {j,7',i*} C S, we have ¢ (V) < 2AE3EVATHI0AL0 W\;HO/\JF
agent i € §, ASTVALI0ALD W c¢(T) < ¢(Y).

¢i'(T), contradicting to the assumption that for every

Lastly, we just need to handle the easier subcase in which 7 already belongs to the stop placement, i.e.
79 € Y. Here we need only consider the multiplicative improvement of agents j and *:

(cj(Y) ci*(Y)) < < A-rp+d(b;,Y) d(ai*,’]'l)+d(CLj,T1)+/\‘TT+d(bi*,Y))
¢i(T)" ¢i=(T) d(aj,m) +d(bj, m2)’ ci(T)

A TT—|—d b],TQ) 1*(T) —|—d(aj,7'1)+/\~rT
daj,Tl )+ d(bj, 2)’ rT
“m crp (A4 Dre +d(a;, ™)
- daj,ﬁ rT
<m (m (A a1+ A+ ))
CA+1+HVATE6A L
= 5 .

Since this value never exceeds 1 + v/2 on the unit interval, this also provides a contradiction and concludes
our proof. O
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5.2 Analysis of Core Fairness of the \-Hybrid Algorithm

We next analyze the core approximation ratio of the A-Hybrid algorithm. Our analysis leverages Theorem 1,
which provides the crucial link between proportional fairness in clustering and core in TrSP. We will demon-
strate that the A-Hybrid algorithm satisfies (7NJF6;;\W)—PF in the induced clustering instance, which

9. Y AZH6A+14+A+1 )
’ 2

immediately implies that it satisfies ( -core.

Lemma 2. For any A € (0,1] and any TrSP instance I, the \-Hybrid solution under T guarantees

/\2 . . . .
W—PF in the induced clustering instance ZC.

Proof. Given any TrSP instance Z = (N,C, k,{0;}ien), let Y be the TrSP solution returned by A-Hybrid

under Z. We show that Y satisfies —V’\Q%’QW—PF for the induced clustering instance Z¢ = (©,C, k).
Suppose, for the sake of contradiction, that there exists a set of datapoints #/ C © and candidate center
c € C such that |[¢'| > 2-[2] and 7v)‘2+6;)+\1+)‘+1 -d(e,c) < d(e,Y) for each e € §'.

Let 77 = maxeeg d(e,¢), let e* denote the point in #" that attains this maximum, and let i* denote
the agent which e* is an endpoint of in the original TrSP instance, i.e., e* € 6;«. We first consider the
case in which the parameter r never reaches r7/A during the execution of \-Hybrid. If e* was deactivated
during the GC-TrSP loop, then d(e*,Y) < A(rp/A) = rp = d(e*, ¢), providing a contradiction. The other
sub-case is that e* was instead deactivated during the ECA loop, in which case it follows that d(e*,Y) <
ci»(Y) < rp/X = (1/X) - d(e*,¢). It can be verified that + < 7&‘%21&)&1 for all A € (0,1], meaning this
also contradicts our assumption.

We now restrict our attention to the case in which the parameter r reaches rr/A during the execution of
A-Hybrid. Note that when r = rp /), if all endpoints in 6’ remain active, the ball of radius A - (rp/A\) = rp
centered at ¢ captures at least 2-[n/k] endpoints. Since ¢ is not selected, there must be at least one datapoint
which was deactivated when the parameter r was at most r7/A. We term this endpoint e’, denote the agent
it belongs to by ¢/, and denote the candidate center selected in the round e’ is deactivated by y.

We claim that d(e’,y) < rr/A. To see this, note that if y was selected in a GC-TrSP round, it holds that
d(e',y) < Arp /A < rp/A. Otherwise, y was selected in an ECA round, and it follows that d(e’,y) < ¢;/(Y) <
rr /. Using this, we now obtain a contradiction by considering the minimum multiplicative improvement
attained by endpoints e* and ¢’ from c:

! (Cg(ee*{i))’ Cfl((i/%)) < min <d(e*’ c) + d(:aTe’) +d(ey). dZ'/,i))
< min <(1 +1/N)rp +d(e,c) /A )
rT "d(e,c)

< rgg(}){[min(q +14+1/X1/(X-q))]

CVATFGA I+ A+
- o :

rr,d(e’,c)

where the final equality holds because the maximum in the penultimate expression is obtained when ¢ =

(VAT 6A+1—A—1)/(2)). O

Combining Theorem 1 and Lemma 2 yields the following corollary, which gives an upper bound on the
core approximation guaranteed by the A-Hybrid rules.

Corollary 1. For every A € (0,1], the A\-hybrid algorithm satisfies (2, 7”‘2'*'631%)—007"6.

We give an almost tight lower bound which, when taken together with Remark 2, gives a bound between
that of ECA and that of GC-TrSP, as one would expect.

Proposition 6. Given any A € (0,1] and §,e > 0, there is an instance for which A\-hybrid does not satisfy
(2 -4 VANZH122+142X+1 5)
J DY

-core.
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The lower bound implied by Proposition 6 for A > 1/2/2 is weaker than the lower bound proved for
GC-TrSP in Proposition 2. Given this, we complement Proposition 6 by strengthening the core lower bound
of A\-hybrid for the case of A > 1/2 in the following remark.

Remark 2. Given any \ > 1/2, there is an instance for which \-hybrid does not satisfy (2 — 8,1+ /2 —¢)-
core. This follows from the exact same example and argument used to prove Proposition 2. In particular,
due to the symmetry of the instance given by Table 4, as long as A > 1/2, the ECA loop will not select any
candidates in the execution of A-hybrid. This means the algorithm will execute identically to GC-TrSP on
this instance.

Given Remark 2, it is likely that the lower bound in Proposition 6 is not tight. If it is the case that
our upper bound is indeed tight, this suggests that the core approximation of A\-Hybrid is thanks to the
algorithm’s approximation of PF (rather than any consideration involving cost). Again, we observe that
while taking a clustering approach naively ignores agent-specific cost information, it serves as a very useful
tool in the pursuit of core approximation.

6 Experiments

We complement our theoretical contributions by evaluating the empirical performance of the GC-TrSP
algorithm, the Expanding Cost algorithm, and the A-Hybrid algorithm on a real world dataset.

Experimental Setup We use resident travel route data from the City of Helena Capital Transit service,
comprising 10,282 distinct travel routes between 3,075 unique spatial points. The initial dataset specifies
only pick-up and drop-off locations. Using OpenStreetMap data [32] and the open-source Valhalla routing
engine [39], we compute route-level travel times for both walking and public transit, which serve as the
corresponding cost metrics. For the JR and core experiments, we randomly sample 400 and 40 agents®,
respectively, together with their associated routes from the full dataset. We define the candidate stop set as
the union of all observed locations among the sampled agents. For the target number of stops, we evaluate
JR over k in [20, 60,80, 100] and core over k in [5,10,15,20]. Finally, because the Helena dataset exhibits
substantial disparities between walking and transit costs, we additionally rescale transit costs over a broad
range to assess algorithmic performance under varying degrees of separation between transit and walking
scales. For each parameter combination, we sample 50 rounds for the experiments.

JR Evaluation We evaluate the approximation performance with respect to JR by simulating GC-TrSP,
ECA and %—Hybrid across a range of stop selection sizes and transit cost scales.

In Figure 6, we first observe that for all of the three evaluated algorithms, the approximation ratio of
JR under random sampling is close to 1, suggesting that our theoretical lower bounds may not be borne out
in practice. Moreover, despite our result that ECA admits a stronger worst case bound for JR, GC-TrSP
delivers approximation ratios that remain close to one across all stop selection sizes. ECA exhibits slightly
larger ratios and greater variability when the transit costs remain low, with the most pronounced separation
around k = 20, followed by improvement as k increases. The %-Hybrid algorithm closely tracks GC-TrSP:
both maintain averages very near 1 when k is small and exhibit only a mild upward trend as k increases. The
trend shifts when the transit cost is scaled by a larger factor, representing scenarios where walking (or other
modes) may be a feasible alternative for a significant number of routes. In this regime, the behavior of ECA
changes substantially. Its average approximation ratio decreases as k grows, and its outcomes become more
concentrated, indicating improved robustness with respect to JR approximation. In contrast, GC-TrSP and
%—Hybrid display a gradual increase in their averages as k increases, whereas ECA is stable and becomes

competitive, achieving better approximation ratios for larger sizes.

9The core test uses a small sample size because verifying core membership is computationally intensive and requires solving
large scale integer programs.
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Figure 6: JR approximation evaluation for comparing GC-TrSP, ECA and %—Hybrid with 400 agents. Stop selection
size ranges from 20 to 100, and the transit cost scale ranges from 0 to 10. Distribution of instance approximation
ratios and the mean approximation ratio with 95% confidence intervals

Core Evaluation We fix the size relaxation parameter () to 2 and evaluate the cost approximation
ratios (8) of both algorithms and exhibit the performance of GC-TrSP, ECA and %-Hybrid under the zero
transit cost (transit cost scaling = 0) and regular transit cost settings (transit cost scaling = 1) in Table 3.
Experimental results under various transit cost scalings can be found in the Appendix C. Across all stop
selection sizes and transit cost scales, GC-TrSP attains better core approximation ratios than ECA and %—
Hybrid. While ECA displays higher means and greater variability in several regimes, its approximation ratios
remain close to 1 for most instances, which indicates that ECA is still practically effective in our experiments,
despite admitting an arbitrarily poor worst-case guarantee. The %—Hybrid algorithm interpolates between
GC-TrSP and ECA, tracking GC-TrSP closely while showing a modest increase for larger k, but with much
less variance than ECA.

Zero Transit Cost (Scaling = 0)
k=5 k=10 k=15 k=20
GC [ ECA [ Z-Hybrid | GC [ ECA | 3-Hybrid | GC [ ECA | 3-Hybrid | GC | ECA | Z-Hybrid
Average | 1.016 | 1.114 1.105 1.095 | 1.430 1.148 1.155 | 1.365 1.217 1.074 | 1.269 1.175
Min 1 1 1 1 1.074 1 1 1.081 1.011 1 1.005 1.025
Max 1.263 | 1.301 1.266 1.556 | 2.095 1.575 1.533 | 1.743 1.433 1.241 | 1.675 1.337
Regular Transit Cost (Scaling = 1)
k=5 k=10 k=15 k=20
GC [ ECA [ §-Hybrid | GC [ ECA | 3-Hybrid | GC | ECA | 3-Hybrid | GC | ECA | 3-Hybrid
Average | 1.007 | 1.072 1.063 1.053 | 1.454 1.120 1.067 | 1.386 1.121 1.058 | 1.190 1.117
Min 1 1 1 1 1.138 1 1 1.041 1 1 1 1
Max 1.082 | 1.256 1.256 1.240 | 1.889 1.369 1.241 | 1.787 1.253 1.257 | 1.499 1.338

Results

Results

Table 3: Core approximation evaluation with 40 agents under zero and regular transit costs. The stop selection size
ranges from 5 to 20. We consider both zero and regular transit costs. GC denotes GC-TrSP. For each setting, we
report the average, minimum, and maximum values over 50 sampled rounds.

22



7 Conclusion

In this paper, we introduce a model of transit stop placement in general metric spaces. Pursuing fair stop
placements, we first explored the extent to which fair clustering algorithms guarantee fair solutions for
instances of our problem. We then introduce the Expanding Cost Algorithm (ECA), which performs better
than all clustering-based algorithms with respect to JR, and is robust to the incorporation of transit times
between stops, but provides no guarantee with respect to core. We then combined our algorithm with the
Greedy Capture algorithm from clustering to introduce a hybrid class of algorithms which navigate a tradeoff
between JR and core.

Our central algorithmic result, showing that ECA satisfies (1 +1/2)-JR, extends to arbitrary transit cost
metrics. In contrast, our core approximation upper bounds relied on a connection to proportional fairness
in clustering, and thus necessarily hold only under null transit costs. It remains to be seen whether it is
possible to give constant-factor approximations to core that also apply under broader classes of transit cost
metrics. This is a promising direction.

In one sense, the transit stop problem can be viewed as a generalization of the centroid selection in which
each agent has two points rather than one. One possible extension of the transit stop problem is to allow
each agent to have more than two location points or multiple pairs of points that need to be traversed. The
first challenge of such an extension would be defining a sensible cost function for agents. It would then be
interesting to see how well the results of this paper extend to such a setting.
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A Minimizing Total Travel Cost

Proposition 1. Unless P = NP, there is no polynomial time algorithm which computes a minimum cost
solution to the TrSP problem, even under null transit times, i.e., even when d'(i,7) =0 for all i,j € X.

Proof. We prove the statement by a reduction from the canonical k-median problem in general metric space,
which is known to be NP-hard [28].

k-median decision problem. Given a metric space (X,d), a set N of datapoints {z;}ien, a set C' of
candidate centers, an integer k', and a bound B, the decision problem asks whether there exists a set Y C C’
with |Y] < &’ such that

> d(x;,Y) < B.

i€EN

TrSP decision problem (with null transit times). Let Z = (N,C, k,0;i € N) be a TrSP instance with
null transit times in metric space (X, d). The 7-TrSP decision problem asks whether there exists a set Y C C
with |Y] < k such that

Z C; (Y) <T.

ieN

Given an arbitrary k-median instance in metric space (X', d), we construct a corresponding TrSP instance
as follows. We augment the metric space by adding additional points, ' and ¢/, which are both located
at a distance B from every other point in the metric space and distance 0 from each other, i.e., Vx €
X\ {2/, },d(2’,x) =d(,xz) = B and d(2/,¢’) = 0. We then let §; = (z;,2’) be the endpoints of each agent
i€ N, and let C =CU{c'}. Lastly, we set the number of desired transit stops to k =k’ + 1 and let 7 = B.

Suppose the k-median instance is a YES instance, i.e., there exists a solution Y C C with |[Y| <k =k—1
such that >,y d(x;,Y) < B. We show that Y* = Y U {¢'} is a YES solution for the constructed TrSP
instance:

ci(Y*) = min{d(z;,z"), min d(z;,y1) + d(2,
Soar) = S minfaensa, i drsw) + o)
= Z min{ B, min d(z;,y)} (- deY*da,d)=0)
ieN y1€Y
<> d(@:,Y)
ieN
< B.

Conversely, suppose the TrSP instance is a YES instance, i.e., there exists Y with |Y| < k such that
> ien ci(Y) < B. First observe that ¢* € Y, since otherwise every agent’s cost will be at least B. Also note
that minycy d(z;,y) < B for every i € N. Now consider the set Y* =Y \ {¢}. Since [Y*| =[Y| -1 <
k — 1=K, we know that Y* is a feasible solution to the k-median instance. We see that Y* is a certificate
that the k-median instance is a YES instance by noting that

iEN iEN

= Z min{d(z;, "), min d(z;,y)} (. mingey d(z;,y) < B)
iEN ver

= Z min{d(z;,2'), min_d(z;,y1) +d(@’,y2)}
‘ Y1,42€Y
€N

=) aY)
=

<B.
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The third transition follows because ¢ € Y and thus choosing o to be ¢’ incurs no additional cost. Since
the above reduction is polynomial time, the TrSP decision problem is NP-hard. O

B Omitted Proofs

Some of the proofs contained herein correspond only to the lower bound portion of the statements. In these
cases, the proof of the upper bound portion can be found in the main body.

B.1 Omitted Proof of Proposition 2

Proposition 2. GC-TrSP algorithm (Algorithm 1) satisfies (2,1 + v/2)-core. Howewver, for any §,& > 0,
there exists an instance for which GC-TrSP violates (2 — 6,1 + /2 — ¢)-core.

Proof. Since Chen et al. [14] has shown that the Greedy Capture algorithm achieves a (1+4+/2)-PF guarantee
in general fair clustering, it follows that for any TrSP instance Z, the GC-TrSP algorithm satisfies (1++/2)-PF
in the induced clustering instance Z¢. By Theorem 1, this implies that GC-TrSP satisfies the (2, 14++/2)-core.

To prove the bound is tight, let H = [1/(3-4§)]. We construct an instance with n = 15 - H agents N,
m = 7 candidate transit stops C = {c1,¢2,...,¢7}, and k = 5. The agent set N is partitioned into three
subsets, each consisting of agents located at distinct but internally identical locations. Specifically, we define
N = Ny U Ny U N3, where |N1| = |[N2| = 6-H — 1, and |[N3| = 3+ H 4+ 2. For each group N;, all agents
share the same travel locations, denoted (a;,b;). The distance from transit stops {71,...,74} to locations
{a1,b1,a9,bs,a3,b3} are specified in Table 4. For the remaining stops {75, 76, 77}, we assign a large constant
distance to each endpoint in {a1, b1, as, bs, ag, b3}.

d() aq as as bl b2 b3

1 1 V2 -1 1 [ee) 00 00
T 1+vV2—¢ 1-(V2—-1)e 1-(V2-1) o 0 00
T3 00 00 1 V2-1 1
1+v2—-¢ 1-(V2-1)e 1-(2-1)

818

Ty 00 00

Table 4: An instance in which GC-TrSP fails (2 — 6,1 + /2 — ¢)-core.

Keeping in mind that [22] = 6- H, we describe the execution of GC-TrSP on this instance. The minimum
radius ball that captures 6- H endpoints is centered at 75 (and 74) with radius 1 — (v/2 —1)e. Thus, GC-TrSP
selects {72, 74}, and deactivates all of the endpoints of the agents in NoUN3. After that, there is no candidate
which can capture 6 - H endpoints with a distance radius less than oo, so endpoints located at a; (b1) are
deactivated by 72 (74). As a result, GC-TrSP returns solution Y = {73, 74}.

Now consider the set of agents S = Nj U No and candidate stop set T'= {71, 73}. For each agent i € Ny,

it holds that ig; = 2(1“2/575) =1+ +/2 —e. For each agent i € N,, it holds that ZZE)T/; = 2(127(5/\55:1?5) -

1+vV2—¢. Furthermore, we have

S|=12-H-2>@2-——). 2 > 0_j

7] n
3-H' k '

k

It follows that there exists such a blocking coalition S and a candidate stop subset T' with size |S| >
(2-19)- y such that for every agent i € S, we have (1 + /2 —¢) - ¢;(T) < ¢;(Y). This implies that the
GC-TrSP algorithm violates (2 — 4,1+ v/2 — &)-core. O

Theorem 2. GC-TrSP satisfies (2 + /5)-JR. However, for any € > 0, there exists an instance for which
GC-TrSP violates (2 + /5 — €)-JR.
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Figure 7: An instance where GC-TrSP algorithm fails to satisfy (2 4+ v/5 — ¢)-JR.

Proof. To show the tightness of the analysis, we provide the following instance in which the Greedy Capture
for TrSP (Algorithm 1) fails to achieve (2 + v/5 — ¢)-JR. Consider the TrSP instance pictured in Figure 7.

We consider n = 7 agents, whose endpoints are represented by blue circles. There are 6 candidate transit
stops, marked as red squares, and k = 4. The distances are specified in the figure, and can be considered as
two lines separate by an infinite distance, i.e., the distance between any pair of points lying on the same line
is the sum of the distances of the intervals between them.. We note that [22] = [1!] = 4. It follows that,
once a candidate stop can deactivate 4 active endpoints, it is selected by GC-TrSP and the corresponding
endpoints are deactivated. We observe that y; and ys are the first two candidate stops selected by GC-
TrSP. Afterward, no further candidate stop is selected, as no candidate stop can deactivate at least 4 active
endpoints within a distance radius of at most 2 + @ — §- Once the radius reaches 2 + @ — 5, all the
endpoints are deactivated by the selected stops Y = {y1, y2}, which forms the final solution produced by the
GC-TrSP algorithm. Under this solution Y = {y1, y2}, the costs incurred by agents {1, 2, 3,4} are computed
as follows:

345 €

2 4

(V) = ca(Y) = 2+V5 = 2 oY) = ea(Y) =

Notice that S = {1,2,3,4} forms a deviation coalition that prefers the alternative stop pair T' = {71, 72 }.
Under solution T, the costs are

NG

e1(T) = es(T) = 1,e5(T) = ea(T) = =

Thus, for each agent i € {1,3}, we have iET; =245 —£>2+/5—¢ and for agent i € {2,4}, we have

Ci(Y) 3+vV6

;%—2+\f—(\[; Ve o VG

3]
&

V)

Therefore, we derive that for any agent i € S, (2 + 5 —¢) - ¢;(T) < ¢;(Y), implying that solution Y by
GC-TrSP violates (2 + /5 — ¢)-JR. O

Theorem 3. For any arbitrary transit cost function d’(-) > 0, ECA satisfies (1++/2)-JR. However, for any
e > 0, there exists an instance with null transit costs for which ECA wiolates (14 /2 — ¢)-JR.

Proof. To show the tightness, we provide an instance in which ECA fails to achieve (1 4 v/2 — ¢)-JR. Fix
€ > 0 and consider a TrSP instance with 4 agents, 4 candidate stops, and k = 3. The transit cost function
satisfies d'(i,7) = 0 for any 4,5 € C. For each i € {1,2,3,4}, agent ¢ travels from a; to b;. The distances
between candidate stops and endpoints are specified in Table 5.
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da(-) aq a2, a3 ay b1 ba, b3 by
1 1 V2-1 142 00
T 1++2 1—% 1—% 00 00 00
T3 0 00 00 1

Ta 00 00 00 1++2 1—% —%

Table 5: A TrSP instance in which ECA fails (1 + /2 — ¢)-JR

We first observe that {72, 74} is the first pair selected by ECA as when the cost radius reaches 2(1 — %),
agents {2,3,4} are deactivated by {72, 74}. Afterward, no other candidate stop can be selected by ECA.
Therefore, ECA returns {72, 74} as the output. However, consider a deviation coalition S = {1,2,3} and an

alternative pair T = {71, 73}. For agent 1, we have ¢;(Y) = 2(1++/2) and ¢;(T) = 2. Thus, we have iig; =

142> 14 V2 —c. For agents 2 and 3, we have c2(Y) = ¢5(Y) =2 — £ and o(T) = ¢3(T) = 2(V2 - 1).
Thus, we have

(V)  e3(Y) 2-¢ (V2 +1)e

_al) _4vay - 20 ey

() o(T) 2(v2-1) ( ) 4 ( )€

Thus, ECA fails to satisfy (1 + /2 — ¢)-JR for any ¢ > 0. O

Theorem 4. \-Hybrid satisfies 2E3HVAF10A+9 W—JR, where X € [0,1], and this bound is tight.

Proof. To show the tightness of this approximation ratio, we slightly modify the instance originally used to
prove the tightness of the GC-TrSP algorithm. In the example, we have n = 7 and k = 4 with candidate
stops M = {71, 72, y1, y2 }UD where D = {ys, y4, y5, Y6 }. For candidate stops in D, we assign a large constant
distance to each endpoint. The locations of endpoints and their distances (except candidate stops in D) are
illustrated in Figure 8.

m R 7
1 d A-(1-%)
@ L @ |
al az,as aq as, ag, ar
oo
2 N N Y2
1 d 1—(1—2)e
@ L L 4 |
b3 b1, by b2 bs, bs, b7

A+3+4/A2 10749 . 5 A/A2110a+9-A—1
(% —¢)-JR where the distance d = YA F10A+97A—1

Figure 8: TrSP instance where A-Hybrid violates 1 )

which is in the range of [1, ¥3=1] for A € [0,1].

27 2

Consider the execution of the A-Hybrid algorithm, keeping in mind that [2n/k] = 4. Since X € [0, 1], we
first observe that y; is the first selected transit stop as when the parameter r reaches 1 — 5, y; will deactivate
endpoints {as,as, ag, a7} with a distance radius of A - (1 — §) via the GC-TrSP loop. Notice that the pair
{71, 72} are not selected because they can deactivate 4 agents only when the parameter r reaches 1. After
the selection of yi, it is not until the parameter r reaches (1 — (1 — 3)-¢)/A < 1 that candidate stop y2

deactivates 4 endpoints {bo, b5, bs, b7} in a “GC-TrSP ” loop. Notice that after the selection of y; and ys, no
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other candidate stop or pair is selected by A-Hybrid algorithm as all the endpoints will be deactivated when

the parameter 7 reaches A - (d+2 — (1 — 2)-€). Hence, A-Hybrid algorithm finally outputs Y = {y1,ys}.
Let T denote the pair {71, 72} and consider agent subset S = {1, 2, 3,4}. For agent 1, the cost of using Y is

(V) = MBEVUHI0E o while the cost of using T'is ¢1(T') = 1. Then we have EE}T? = AESEVAFIAES

Similarly, we have i’;g; = AMEBEVAHIOED o a5 agent 3 shares the same cost of using Y and T as agent 1.

For agent 2 (the same for agent 4), we compute that ¢y(Y) = d+ - (1— N+1-(1-3)e= 1+d+A—¢
and c(T) = d. Consequently, we have

) 1+d+r—c¢ 1+X ¢
== ’S :1+ =~ - =

co(T) d d d
4(1+X) €

VAZF10A+9-A-1 d

414N - (VIXZFIOAN+9+ (A + 1))

:]_ —_
* M2 110N+ 09— (A f1)2

_1+4(1+)\)-(\/A2+10A+9+(/\+1))_
B 8(A+1)
VA2 +1 1
<14 A2 + O)\—i2-9+()\+ )_E
VA2 +10A+9+A+3
= 2 — £

QI QL™

Hence, we now have a group of agents S with size (2?"] such that for each agent ¢ € S, it holds that

i”g; < V>‘2+10A2+9+)‘+3 — ¢. This implies that A\-Hybrid algorithm fails to satisfy (2+3EvVAF10A+9 W —e€)-

JR. O

Proposition 6. Given any A € (0,1] and §,e > 0, there is an instance for which A\-hybrid does not satisfy
(2 -5 VANZH122+142X+1 5)
J ax

-core.

Proof. Let H = [2/§]. We construct an instance with n = 4 - H agents, m = 12 candidate transit stops
C = {n,m2,73,74,¢1,...,¢8}, and k = 8. The agent set N is partitioned into six subsets, denoted N; for
i € [6]. The number of agents in each group and their start and end locations are given in Table 6.

i NG (as,b;)

1 H-1 (Il,.’ﬂg)
2 H-1 (1‘2,1'4)
3 H-1 (y1,92)
4 H-1 (y37y4)
5 2 (21, 22)
6 2 (2’3,2’4)

Table 6: The number of agents and endpoint locations of the partition of agents, N, in the instance used to prove
Proposition 6.

The distances from the locations mentioned in Table 6 to the candidate stops {71, T2, T3, T4, ¢1, €2, C3, C4 }
are specified in Table 7. For simplicity, we use ¢ := (vV4A2 + 12X+ 1 — 2\ — 1)/4\. Values in parentheses
correspond to each other and any location-candidate pairs not specified are assigned an infinite distance.
For the remaining stops {c¢s, cs, ¢7,cs}, we assign a large constant distance to each endpoint. Noting that
g <1 for all A € (0, 1], one can check that the resulting metric space satisfies the triangle inequality.
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d() 71(73) c1(es) 72(74) ca(ca)
x1(w3) 1 1+g+1/2-0)—e o0 00
yilys) g 1/(2)) —q-¢ 00 00
z1(z3) 1+4¢q 1/(2\) —q-¢ 00 00
xo(xy) 00 00 1 1+q¢+1/(2-))—¢
ya(ya) o0 00 q /2N —q-¢
() oo % T+q 1@\ —q-

VANZF1220 4142041
-9, 5)

Table 7: Distances for an instance in which A-hybrid fails (2 — g)-core.

4

In words, there are four “zones” where endpoints and candidate stops lie proximal to each other and
each of these zones has an identical structure of endpoint distances. Each agent has an endpoint in exactly
two zones, and notably, N; and N> do not share their respective zone pairs with any other agent group,
whereas N3 and N4 share their zone pairs with N5 and Ng, respectively. We will now explain the execution of
A-hybrid and show that it selects Y = {c1, ¢a, ¢3, ¢4 }. Note that [2n/k] = H. Thus, the endpoints located at
any single point in the table above are not enough to trigger the GC-TrSP loop. However, any ball capturing
at least two of the points in Table 7 is sufficient to trigger the GC-TrSP loop.

We begin with the case in which A > ﬁ Observe that, for each j € [4], there are H 4+ 1 endpoints
within a radius of 1/(2X) —e < 1 of ¢; (specifically endpoints located at y; and z;, whereas 1 is the minimum
radius required to capture at least H endpoints with candidate 7; for each j. Also note that the pair of stops
with the smallest cost radius in this case is ¢; and ¢ (¢3 and ¢4), which capture agents in N3 U N5 (N4 U Ng)
with a cost radius of 1/\ — 2 - ¢ -e < 2. Thus, regardless of whether it is the GC-TrSP loop or ECA loop
which acts first in A-hybrid, we can assume that either ¢; or ¢; and ¢y are selected first. In the former case,
c2, c3, and ¢4 will remain the stops with the minimum radius which can capture H active endpoints and
will thus be selected next by the GC-TrSP loop. In the latter case, c3 and c4 would be selected afterward
by the ECA loop as they can capture H 4+ 1 agents with an identical cost radius to ¢; and cy. This means
that A-hybrid will certainly select Y = {c1, 2, c3, ca} first. At this point, only endpoints belonging to agents
in N1 and N> remain active. These agents would be deactivated by the stops selected already, since every
remaining candidate requires a very large radius to capture both N7 and N3, and A-hybrid would return Y.

Next, we handle the case in which \ < ﬁ Here, the c; stops are not favored by the GC-TrSP loop
since 1/(2X) — e > 1. Instead, the GC-TrSP loop would first select 7; for some j and it would do so when
the r parameter increases so that r- A =1 = r = 1/A. It can be verified that the pair of stops which
capture at least H agents with the minimum cost radius is ¢; and ¢ (or ¢z and ¢4). This holds precisely
because agent groups N7 and Ny are located in distinct zone pairs from N3 and Ny and thus it is impossible
for multiple of these groups to benefit from the selection of two stops. For example, the selection of 7 and
To can capture agents in N3 with a cost radius of 2¢, but incurs infinite cost for agents in N7, Na, and Ny.
Note that the agents in N3 U Nj all incur a cost of 2(1/(2)\) —€) by using ¢1, co. Thus, the radius parameter
r required to select ¢; and ¢y is strictly less than 1/X and hence the ECA loop is triggered first and ¢; and ¢y
are selected. By the same argument, c3 and ¢4 are selected by the ECA loop as well. Thus, A-hybrid selects
Y ={c1,ca,c3,c4} first and the same argument as was used in the first case applies to show that this is the
set returned by A-hybrid.

Now consider the set of agents S = Ny U Ny U N3 U Ny and transit stop set T' = {71, 72,73, 74}. For each
agent ¢ € N; U Na, it holds that

VAN F 12N+ 1420 +1
= I S

¢i(Y)/ei(T)=1+q+1/(2-N) —¢
and for each agent ¢ € N3 U Ny, it holds that

1/(2A) —q-¢
q

ci(Y)/ei(T) =
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where the final equality follows from multiplying the fraction’s numerator and denominator by the conjugate
of the denominator. Lastly, we have

2 IT|-n
S|l=4-H—-4=2-H2—-—=)>(2-9)- .
S| (- 2> @51
In summary, there exists such a blocking coalition S and a candidate stop subset T' with size |S| > (2—9)- ITIL'”
such that for every agent ¢ € S, we have ( V4>‘2+122‘;1+2)‘+1 —¢)-¢(T) < (Y). O

C Missing Details for Experimental Evaluation

In this section, we present additional details of the experimental setup and further experimental results.

C.1 Detailed Experimental Setup

Solution Approximation Verification. The key step regarding the experimental analysis is to compute
the approximation ratio of JR and core with respect to the solutions outputted by GC-TrSP and ECA. We
generally follow the verification procedures from Bullinger et al. [7] (Appendix C).

To test whether a given solution satisfies JR and core, we rely on the following idea. Fix a solution
and examine whether there exist deviations to pairs of stops that would strictly reduce agents’ costs. Such
deviations, if sufficiently widespread, witness a violation of JR or of core stability.

Formally, for any solution Y C C and agent i € N, define

Pi(Y):={T CC:|T| =2,c(T) < ¢;(Y)},

that is, the set of stop pairs to which agent i can deviate and obtain a strictly lower cost. Using this notation,
we recall the Proposition C.1 of Bullinger et al. [7].

Proposition 7. Consider a solution Y C C. We have,
(4) Y satisfies JR if and only if there is no set T C C with |T| =2 such that |{i € N : T € P;(Y)}| > 2.

(i) Y is in the core if and only if there is no set T C C with T # 0 such that |i € N : 3T € P;(Y), T’ C
RS

Given a solution Y, checking whether it satisfies JR can be done in polynomial time. Specifically, one
can compute P;(Y) for each agent i € N, and then verify the condition in Proposition 7 (1) by scanning
over stop pairs T and counting how many agents include T in their deviation pairs. Moreover, to compute
the approximation ratio, one can perform a binary search over a cost relaxation parameter and, for each
candidate value, test whether there exists a pair T' that is strictly improving for at least 27” agents. This
procedure runs in polynomial time.

Regarding core testing, applying the same brute force protocol would require considering an exponential
number of coalitions 7" C C. Instead, we test core stability via the following integer program, denoted

CORETESTING.
max Z ZT;

st x; < Z Y1 Vie N
T’G'Pi(Y)
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Yy < Ys VT/ c Ca |T/| = 278 € T/

Z%’E%Zys

iEN secC
z; € {0,1} Vie N
ys € {0,1} Vs el
yr € {0,1} VT CCT'| =2

We then recall the Proposition C.3 by Bullinger et al. [7] which shows how the integer program checks
the core satisfaction for any given solution.

Proposition 8 ([7]). A solution Y is in the core if and only if its corresponding integer program
( CORETESTING ) has an optimal value of 0.

By Proposition 8, we can again use binary search to identify the smallest cost relaxation parameter for
which, under that parameter, the instance induced by Y yields an integer program with optimal value 0.

Data and Sample. We use trip records from the City of Helena Capital Transit Service dataset, which
contains 10, 282 unique routes among citizens over 3,075 distinct spatial points. Each record specifies a pick
up point and a drop off point. To obtain the underlying travel costs, we combine these trip endpoints with
OpenStreetMap road network data and use the open source Valhalla routing engine to compute shortest
path travel costs. This allows us to derive both walking costs and shuttle bus transit costs between any pair
of points in the spatial set.

Our experiments are designed to compare algorithmic performance across different stop numbers k and
cost scaling settings. For each parameter combination, we sample either 400 agents or 30 agents together
with their associated routes, and take the union of their origin and destination points as the candidate facility
location set. We repeat the sampling procedure 50 times and present, for each algorithm, the average as well
as the minimum and maximum approximation ratios across the sampled instances.

C.2 Extra Core Approximation Evaluation under Different Scaling

Figure 9 shows the empirical approximation ratio to the (2, 5)-core achieved by GC-TrSP, ECA, and the
%—Hybrid algorithm, as a function of the stop number k£ and the cost relaxation parameter 8 under different
transit cost scaling regimes. Across all panels, the three methods behave almost identically for small k (in
particular k = 2,4), with mean approximation ratios essentially equal to 1, indicating that the returned
solutions typically lie in the exact core.

As k increases, the methods begin to separate. ECA is consistently the most sensitive to larger k,
exhibiting a clear upward drift in its average approximation ratio and substantially larger dispersion across
instances, especially when transit costs are small. In contrast, GC-TrSP remains highly stable across all k,
with averages staying very close to 1. The %—Hybrid algorithm interpolates between the two, tracking GC-
TrSP closely while showing a modest increase for larger k, but with much less variance than ECA. while at
scaling 10, all three algorithms are essentially indistinguishable, producing near exact core outcomes across
all k. Notably, ECA admits an unbounded worst case core approximation ratio, yet in our experiments it
remains well behaved, never exceeding an approximation ratio of 2.

D Transit Stop Placement on a Line

Although the algorithm by Bullinger et al. [7] was originally designed for TrSP, it naturally extends to the
clustering problem when the metric space is a line. Specifically, the algorithm processes the data sequentially
from the leftmost point, selecting the nearest point on the right to form clusters of size [ ]. We demonstrate
that this algorithm satisfies PF when M = X.
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Figure 9: Core approximation evaluation for comparing GC-TrSP, ECA and %—Hybrid with 30 agents. Fixing the
size relaxation parameter a as 2. Stop selection size ranges from 2 to 10, and the transit cost scale ranges from 0 to
10. Distribution of instance approximation ratios and the mean approximation ratio with 95% confidence intervals

Proposition 9. Algorithm 1 by Bullinger et al. [7] satisfies PF in clustering on a line when M = X.

Proof. Assume for contradiction that Algorithm 1 by Bullinger et al. [7] does not satisfy PF, that is, for the
solution P by the algorithm, there exists a subset of agents S C N of size |S| > [1] and some center y € M
such that d(i,y) < D;(P) for every i € S. Obviously, we have y ¢ P. Now consider y lies between any two
centers ¢ and ¢’ in P. In this case, there will be at least [%] data points lie strictly between ¢ and ¢’ as
d(i,y) < D;(P) holds for every i € S. However, according to the center selection by Algorithm 1 by Bullinger
et al. [7], there are at most [7 ] —1 date points between ¢ and ¢’ (otherwise ¢’ cannot be selected as a center),
which implies contradiction. For the case that y lies on the left (right) side of the leftmost (rightmost)
center in P, since there are at least [ 7] agents on the left (right) side of leftmost (rightmost) center in P, a
contradiction shows up as one more center should be selected by the design of the algorithm. O

Proposition 9 establishes that Algorithm 1 by Bullinger et al. [7] guarantees PF solutions for clustering
on a line when the candidate set coincides with the set of agents, i.e., M = X. Combined with Theorem 1,
Proposition 9 immediately yields the upper bound of Theorem 4.4 of Bullinger et al. [7], i.e., these statements
show that Algorithm 1 by Bullinger et al. [7] satisfies 2-core when M = X. However, when the candidate
set is arbitrary (allowing agents to be distinct from candidates), the performance of their algorithm can
deteriorate significantly. To illustrate this, we present the following example in Figure 10.

Example 1. Consider an instance with N = {1,2,3,4}, k = 2, and candidates {c1,ca,c3,ca}. All the data
points and candidates are shown in Figure 10. According to the algorithm by Bullinger et al. [7], candidates

data points % % i)’ jl
. I I I I
candidates c1 Co c3 C4

Figure 10: Example of Algorithm by Bullinger et al. [7] fails PF
co and cq will be selected as the centers. However, agents {1,2} (resp. agents {3,4}) form a deviation

coalition that prefers center c1 (resp. center cs3). The approzimation ratio of PF can be arbtrarily poor as
d(1,c1) and d(2,c1) can be arbtrarily small while d(1,c3) and d(2,c3) can be arbtrarily large.
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As a fitting follow-up to this observation, we propose a novel algorithm named ¢-dictator partition
algorithm, which ensures PF for general cases on a line.

Input: N, (X,d), M, k.
Output: P.
1: Initialize P < (), £ be a constant such that £ < |n/k].
2: fori=0,....,k—1do
3:  Let j be the ¢-th agent among {i[n/k] + 1,i[n/k] +2,...,(i +1)[n/k]}.
4 ¢ < mingepaq p d(f, ©).
5. Update P < PU{c¢;}.

Algorithm 4: /-dictator partition algorithm

Theorem 5. The (-dictator partition algorithm satisfies 1-PF in clustering on a line.

Proof. Consider any arbitrary subset S, of agents with size at least [7]. For any subset of candidates T, we
prove that there always exists an agent ¢ in .S such that ¢ prefers the clustering P returned by the ¢-dictator
partition algorithm to T, i.e., 34 € S, D;(P) < D;(T). Without loss of generality, we denote the location of
the leftmost and rightmost agents in S by Im(S) and rm(S).

Case 1: There exists ¢ € P such that ¢ € (Im(S5), rm(S5)).

Consider any unselected candidate y € M \ P. Assuming that y is on the left (right) side of ¢, then there
always exists at least one agent ¢ located on the right (left) side of ¢, meaning that D;(y) > D;(c) > D;(P).

Case 2. There is no candidate ¢ € P satisfying ¢ € (Im(S), rm(S5)).

First note that, due to the size of S, there must be some ¢-dictator agent in the interval [lm(S),rm(S)]. If
S contains some /(-dictator agent, then P contains this agent’s closest center and we are done. We assume
henceforth that there is instead some agent ¢ € (Im(S),rm(S)) \ S who is an ¢-dictator.

The first sub-case is that all of the agents in .S are placed between two selected centers, denoted as ¢ and
c. Tt is apparent that S would not deviate to a candidate y outside of the interval between ¢ and ¢/, i.e.
some candidate left of ¢ or right of ¢/. Hence, we focus on an arbitrary candidate v in the interval between c
and ¢’. Notice that y is not selected by agent ¢, implying that the distance from agent g to ¢ (¢) is strictly
smaller than that to y. Hence, there must exist at least one agent ¢ on the left (right) side of ¢ in S who
prefers ¢ (¢);

The second sub-case is that all of the agents in .S are placed on the left of the leftmost selected center or
on the right of the rightmost selected center. Supposing all of the agents in .S are placed on the left of the
leftmost selected center ¢, then ¢ always selects ¢. No agent in S will deviate to any candidate center y on
the right side of ¢. Furthermore, there must not be a candidate center between the location of ¢ and ¢, since
otherwise, ¢ would not select ¢. Lastly, note that the agent rm(S) would prefer ¢ to any candidate center y
left of ¢ (since ¢ also prefers ¢ to y). If the agents are on the right of the rightmost center, the statement
holds by an analogous argument. This completes the proof. O
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