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Abstract

When aggregating preferences of agents via voting, two desir-
able goals are to incentivize agents to participate in the voting
process and then identify outcomes that are Pareto efficient.
We consider participation as formalized by Brandl, Brandt,
and Hofbauer (2015) based on the stochastic dominance (SD)
relation. We formulate a new rule called RMEC (Rank Maxi-
mal Equal Contribution) that is polynomial-time computable,
ex post efficient and satisfies the strongest notion of participa-
tion. It also satisfies many other desirable fairness properties.
The rule suggests a general approach to achieving very strong
participation, ex post efficiency and fairness.

Introduction
Making collective decisions is a fundamental issue in multi-
agent systems. Two fundamental goals in collective decision
making are (1) agents should be incentivized to participate
and (2) the outcome should be such that there exists no other
outcome that each agent prefers. We consider these goals
of participation (Fishburn and Brams, 1983; Moulin, 1988)
and efficiency (Moulin, 2003) in the context of probabilistic
social choice.

In probabilistic social choice, we study probabilistic so-
cial choice functions (PSCFs) which take as input agents’
preferences over alternatives and return a lottery (probability
distribution) over the alternatives.1 The lottery can also rep-
resent time-sharing arrangements or relative importance of
alternatives (Aziz, 2013; Bogomolnaia, Moulin, and Stong,
2005). For example, agents may vote on the proportion of
time different genres of songs are played on a radio channel.
This type of preference aggregation is not captured by tra-
ditional deterministic voting in which the output is a single
discrete alternative which may not be suitable to cater for
different tastes.

When defining notions such as participation, efficiency,
and strategyproofness, one needs to reason about prefer-
ences over probability distributions (lotteries). In order to
define these properties, we consider stochastic dominance
(SD). A lottery is preferred over another lottery with respect
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1PSCFs are also referred to as social decision schemes in the
literature.

to SD, if for all utility functions consistent with the ordinal
preferences, the former yields as much utility as the latter.

Although efficiency and strategyproofness with respect to
SD have been considered in a series of papers (Aziz, 2013;
Aziz and Stursberg, 2014; Aziz, Brandt, and Brill, 2013b;
Aziz, Brandl, and Brandt, 2014; Bogomolnaia, Moulin, and
Stong, 2005; Cho, 2012; Gibbard, 1977; Procaccia, 2010),
three notions of participation with respect to SD were for-
malized only recently by Brandl, Brandt, and Hofbauer
(2015a). The three notions include very strong (participat-
ing is strictly beneficial), strong (participating is at least as
helpful as not participating) and standard (not participating
is not more beneficial). In contrast to deterministic social
choice in which the number of possible outcomes are at most
the number of alternatives, probabilistic social choice admits
infinitely many outcomes which makes participation even
more meaningful: agents may be able to perturb the outcome
of the lottery slightly in their favour by participating in the
voting process. In spirit of the radio channel example, voters
should ideally be able to increase the fractional time of their
favorite music genres by participating in the vote to decide
the durations.

One of the central results presented by Brandl, Brandt,
and Hofbauer (2015a) was that there exists a PSCF (RSD—
Random Serial Dictatorship) that satisfies very strong SD-
participation and ex post efficiency (Theorem 4, (Brandl,
Brandt, and Hofbauer, 2015a)). In this paper, we propose
a polynomial-time rule that satisfies the strongest notion of
participation and is also ex post efficient. We show that it
also satisfies several other desirable properties.

Contributions Our central contribution is a new proba-
bilistic voting rule called Rank Maximal Equal Contribution
Rule (RMEC). RMEC satisfies very strong SD-participation
and ex post efficiency. Moreover RMEC is polynomial-time
computable and also satisfies other important axioms such
as anonymity, neutrality, fair share, and proportional share.
Fair share property requires that each agent gets at least
1/n of the maximum possible utility. Proportional share is
a stronger version of fair share. Whereas RMEC is ex post
efficient, it is not SD-efficient.

RMEC has two key advantages over RSD the known
rule that satisfies very strong SD participation. Firstly,



Serial dictator RSD SML BO ES R RMEC
Properties

SD-efficient + – + + + –
ex post efficient + + + + + +

Very strong SD-participation - + – – – +
Strong SD-participation + + – + – +
SD-participation + + + + + +

Anonymous – + + + + +
Proportional share – + – – – +

Strategyproof for dichotomous + + + – – +
and strict preferences

Polynomial-time computable + – + + + +

Table 1: A comparison of axiomatic properties of differ-
ent PSCFs: RSD (random serial dictatorship), SML (strict
maximal lotteries), BO (uniform randomization over Borda
winners), ES R (egalitarian simultaneous reservation) and
RMEC (Rank Maximal Equal Contribution).

RMEC is polynomial-time computable2 whereas comput-
ing the RSD probability shares is #P-complete. The com-
putational tractability of RMEC is a significant advantage
over RSD especially when PSCFs are used for time-sharing
purposes where computing the time shares is important.
For RSD, it is even open whether there exists an FPRAS
(Fully Polynomial-time Approximation Scheme) for com-
puting the outcome shares/probabilities. Secondly, RMEC
is much more efficient in a welfare sense than RSD. In par-
ticular, RMEC dominates RSD in the following sense: for
any profile on which RMEC is not SD-efficient, RSD is not
SD-efficient as well.3 In fact we show that for most prefer-
ence profiles with small number agents and alternatives (for
which arbitrary lotteries can be SD-inefficient), RMEC al-
most always returns an SD-efficient outcome. For 4 or less
agents and 4 or less alternatives, all RMEC outcomes are
SD-efficient whereas this is not the case for RSD.

Our formulation of RMEC suggests a general
computationally-efficient approach to achieving ex post
efficiency and very strong SD-participation. We identify
MEC (Maximal Equal Contribution)—a general class of
rules that all satisfy the properties satisfied by RMEC:
single-valued, anonymity, neutrality, fair share, proportional
share, ex post efficiency, very strong SD-participation, and a
natural monotonicity property. They are also strategyproof
under strict and dichotomous preferences.

A relative comparison of different probabilistic voting
rules is summarized in Table 1.

2Unlike other desirable rules such as maximal lotteries (Aziz,
Brandt, and Brill, 2013b; Brandl, Brandt, and Seedig, 2016) and
ESR (Aziz and Stursberg, 2014), RMEC is relatively simple and
does not require any linear programs to find the outcome lottery.

3This idea of comparing two mechanisms with respect to a
property may be of independent interest. When two mechanisms
f and g do not satisfy a property φ in general, one can still say that
that f dominates g with respect to φ if for any instance on which f
does not satisfy φ, g does not satisfy it either. We prove that RMEC
dominates RSD wrt SD-efficiency.

Related Work
One of the first formal works on probabilistic social
choice is by Gibbard (1977). The literature in probabilis-
tic social choice has grown over the years although it is
much less developed in comparison to deterministic social
choice (Brandt, 2017). The main result of Gibbard (1977)
was that random dictatorship in which each agent has uni-
form probability of choosing his most preferred alternative
is the unique anonymous, strategyproof and ex post efficient
PSCF. Random serial dictatorship (RSD) is the natural gen-
eralization of random dictatorship for weak preferences but
the RSD lottery is #P-complete to compute (Aziz, Brandt,
and Brill, 2013a). RSD is defined by taking a permutation of
the agents uniformly at random and then invoking serial dic-
tatorship: each agent refines the working set of alternatives
by picking his most preferred of the alternatives selected by
the previous agents).

Bogomolnaia and Moulin (2001) initiated the use of
stochastic dominance to consider various notions of strat-
egyproofness, efficiency, and fairness conditions in the do-
main of random assignments which is a special type of
social choice setting. They proposed the probabilistic se-
rial mechanism—a desirable random assignment mecha-
nism. Cho (2012) extended the approach of Bogomolnaia
and Moulin (2001) by considering other lottery extensions
such as ones based on lexicographic preferences.

Participation has been studied in the context of determin-
istic voting rules in great detail. Fishburn and Brams (1983)
formalized the paradox of a voter having an incentive to not
participate for certain voting rules. Moulin (1988) proved
that Condorcet consistent voting rules are susceptible to a
“no show.” We point out that no deterministic voting rule
can satisfy very strong participation. Consider a voting set-
ting with two agents and two alternatives a and b. Agent 1
prefers a over b and agent 2 prefers b over a. Then what-
ever the outcome of voting rule, one agent will get a least
preferred outcome despite participating. The example fur-
ther motivates the study of PSCFs with good participation
incentives.

The tradeoff of efficiency and strategyproofness for
PSCFs was formally considered in a series of papers (Aziz,
2013; Aziz and Stursberg, 2014; Aziz, Brandt, and Brill,
2013b; Aziz, Brandl, and Brandt, 2014; Bogomolnaia,
Moulin, and Stong, 2005). Aziz and Stursberg (2014) pre-
sented a generalization — Egalitarian Simultaneous Reser-
vation (ES R) — of the probabilistic serial mechanism to the
domain of social choice. Aziz (2013) proposed the maximal
recursive (MR) PSCF which is similar to the random serial
dictatorship but for which the lottery can be computed in
polynomial time.

Brandl, Brandt, and Hofbauer (2015b) study the connec-
tion between welfare maximization and participation and
show how welfare maximization achieves SD-participation.
However the approach does not necessarily achieve very
strong SD-participation or even strong SD-participation.

In very recent work, Gross, Anshelevich, and Xia (2017)
presented an elegant rule called 2-Agree that satisfies very
strong SD-participation, ex post efficiency, and various other



properties. However, the rule is defined for strict prefer-
ences.4

Preliminaries
Consider the social choice setting in which there is a set of
agents N = {1, . . . , n}, a set of alternatives A = {a1, . . . , am}

and a preference profile %= (%1, . . . ,%n) such that each %i is
a complete and transitive relation over A. Let R denote the
set of all possible weak orders over A and let RN denote all
the possible preference profiles for agents in N. Let F (N)
denote the set of all finite and non-empty subsets of N. We
write a %i b to denote that agent i values alternative a at least
as much as alternative b and use �i for the strict part of %i,
i.e., a �i b iff a %i b but not b %i a. Finally, ∼i denotes i’s
indifference relation, i.e., a ∼i b if and only if both a %i b
and b %i a. The relation %i results in equivalence classes
E1

i , E
2
i , . . . , E

ki
i for some ki such that a �i a′ if and only if

a ∈ El
i and a′ ∈ El′

i for some l < l′. Often, we will use these
equivalence classes to represent the preference relation of an
agent as a preference list i : E1

i , E
2
i , . . . , E

ki
i . For example, we

will denote the preferences a∼ib �i c by the list i : {a, b}, {c}.
For any set of alternatives A′, we will refer by max%i (A

′) to
the set of most preferred alternatives according to preference
%i.

An agent i’s preferences are dichotomous if and only if
he partitions the alternatives into at most two equivalence
classes, i.e., ki ≤ 2. An agent i’s preferences are strict if and
only if %i is antisymmetric, i.e. all equivalence classes have
size 1.

Let ∆(A) denote the set of all lotteries (or probability dis-
tributions) over A. The support of a lottery p ∈ ∆(A), de-
noted by supp(p), is the set of all alternatives to which p
assigns a positive probability, i.e., supp(p) = {x ∈ A | p(x) >
0}. We will write p(a) for the probability of alternative a
and we will represent a lottery as p1a1 + · · · + pmam where
p j = p(a j) for j ∈ {1, . . . ,m}. For A′ ⊆ A, we will (slightly
abusing notation) denote

∑
a∈A′ p(a) by p(A′).

A PSCF is a function f : Rn → ∆(A). If f yields a set
rather than a single lottery, we call f a correspondence. Two
minimal fairness conditions for PSCFs are anonymity and
neutrality. Informally, they require that the PSCF should not
depend on the names of the agents or alternatives respec-
tively.

In order to reason about the outcomes of PSCFs, we need
to determine how agents compare lotteries. A lottery exten-
sion extends preferences over alternatives to (possibly in-
complete) preferences over lotteries. Given %i over A, a lot-
tery extension extends %i to preferences over the set of lotter-
ies ∆(A). We now define stochastic dominance (SD) which
is the most established lottery extension.

Under stochastic dominance (SD), an agent prefers a lot-
tery that, for each alternative x ∈ A, has a higher probabil-
ity of selecting an alternative that is at least as good as x.
Formally, p %SD

i q if and only if ∀y ∈ A :
∑

x∈A:x%iy p(x) ≥∑
x∈A:x%iy q(x). SD (Bogomolnaia and Moulin, 2001) is par-

4Under strict preferences, random dictatorship satisfies all the
properties examined in this paper.

ticularly important because p %SD q if and only if p yields
at least as much expected utility as q for any von-Neumann-
Morgenstern utility function consistent with the ordinal pref-
erences (Cho, 2012). Note that in such utility functions,
agents are interested in maximizing expected utility.

We define the RSD PSCF because we will especially com-
pare our PSCF with RSD. Let ΠN be the set of permutations
over N and π(i) be the i-th agent in permutation π ∈ ΠN .
Then, RSD(N, A,%) =

∑
π∈ΠN

1
n! U(Prio(N, A,%, π)) where

Prio(N, A,%, π) = max%π(n) (max%π(n−1) (· · · (max%π(1) (A)) · · · )),
U(B) is the uniform lottery over the given set B.

Efficiency A lottery p is SD-efficient if and only if there
exists no lottery q such that q %SD

i p for all i ∈ N and q �SD
i p

for some i ∈ N. A PSCF is SD-efficient if and only if it
always returns an SD-efficient lottery. A standard efficiency
notion that cannot be phrased in terms of lottery extensions
is ex post efficiency. A lottery is ex post efficient if and only
if it is a lottery over Pareto efficient alternatives.

Participation Brandl, Brandt, and Hofbauer (2015a) for-
malized three notions of participation.

• Formally, a PSCF f satisfies SD-participation if there ex-
ists no %∈ RN for some N ∈ F (N), and some i ∈ N such
that f (%−i) �SD

i f (%).

• A PSCF f satisfies strong SD-participation if f (%) %SD
i

f (%−i) for all N ∈ F (N), %∈ RN , and for all i ∈ N.
• A PSCF f satisfies very strong SD-participation if for all

N ∈ F (N), %∈ RN , and for all i ∈ N, f (%) %SD
i f (%−i) and

f (%) �SD
i f (%−i) whenever ∃p ∈ ∆(A) : p �SD

i f (%−i).

Informally speaking, SD-participation avoids the incen-
tive to abstain; strong SD-participation gives voters at least
as much benefit in participating as abstaining; and very
strong SD-participation gives voter strict benefit in partici-
pating. The first two concepts are different because the SD
relation may not be complete. Very strong SD-participation
is a desirable property because it gives an agent strictly more
expected utility for each utility function consistent with his
ordinal preferences. We already pointed out that no deter-
ministic voting rule can satisfy very strong SD-participation.

Strategyproofness A PSCF f is SD-manipulable if and
only if there exists an agent i ∈ N and preference profiles %
and %′ with % j=%

′
j for all j , i such that f (%′) �SD

i f (%).
A PSCF is weakly SD-strategyproof if and only if it is not
SD-manipulable. It is SD-strategyproof if and only if f (%)
%SD

i f (%′) for all % and %′ with % j=%
′
j for all j , i. Note

that SD-strategyproofness is equivalent to strategyproofness
in the Gibbard sense.

Rank Maximal Equal Contribution
We present Rank Maximal Equal Contribution (RMEC).
The rule is based on the notion of rank maximality
that is well-established in other contexts such as assign-
ment (Michail, 2007; Featherstone, 2011).



For any alternative a, its rank in agent i’s preference list
%i is j if a ∈ E j

i i.e., it is in i’s j-th equivalence class. For
any alternative a, its corresponding rank vector is r(a) =
(r1(a), . . . , rm(a)) where r j(a) is the number of agents who
have a in his j-th equivalence class. For a lottery p, its cor-
responding rank vector is r(p) = (r1(p), . . . , rm(p)) where
r j(p) is

∑
i∈N
∑

a∈E j
i

p(a). We compare rank vectors lexico-
graphically. One rank vector r = (r1, . . . , rm) is better than
r′ = (r′1, . . . , r

′
m) if for the smallest i such that ri , r′i , it must

hold that ri > r′i .
The notion of rank vectors leads to a natural PSCF: ran-

domize over alternatives that have the best rank vectors.
However such an approach does not even satisfy strong SD-
participation. It can also lead to perverse outcomes in which
minority is not represented at all: Consider the following
preference profile.

1 : a, b 2 : a, b 3 : b, a

For the profile, the rank maximal rule simply selects a with
probability 1. This is unfair to agent 3 who is in a minority.
Agent 3 does not get any benefit of participating.

Let F(i, A,%) be the set of most preferred alternatives
of agent i that have best rank vector among all his most
preferred alternatives. In the RMEC rule, each agent i ∈
N contributes 1/n probability weight to a subset of his
most preferred alternatives. Precisely, he gives probability
weight 1/n|F(i,A,%)| to each alternative in F(i, A,%). The re-
sultant lottery p is the RMEC outcome. We formalize the
RMEC rule as Algorithm 1. We view RMEC outcome lot-
tery p as consisting of n components p1, . . . , pn where pi =∑

a∈F(i,A,%)
1

n|F(i,A,%)|a.

Input: (N, A,%)
Output: lottery p over A.

1 Initialize probability p(a) of each alternative a ∈ A to
zero.

2 for i = 1 to |N | do
3 Identify F(i, A,%) the subset of alternatives in

max%i (A) with the best rank vector.
4 for each a ∈ F(i, A,%) do
5 p(a)←− p(a) + 1/(n|F(i,A,%)|)

{we will denote by pi the probability weight of
1/n allocated by agent i uniformly to alternatives
in F(i, A,%)}

6 return lottery p.

Algorithm 1: The Rank Maximal Equal Contribution rule

Example 1 Consider the following preference profile.

1 : {a, b, c, f }, d, e 2 : {b, d}, e, {a, c, f }
3 : {a, e, f }, d, b, c 4 : c, d, e, {a, f }, b
5 : {c, d}, {e, a, b, f }

The rank vectors of the alternatives are as follows:
a : (2, 1, 1, 1, 0); b : (2, 1, 1, 0, 1); c : (3, 0, 1, 1, 0); d :
(2, 3, 0, 0, 0); e : (1, 2, 2, 0, 0); and f : (2, 1, 1, 1, 0).

Each agent selects the most preferred alternatives with the
best rank vector to give his 1/5 probability uniformly to the
following alternatives: 1 : c; 2 : d; 3 : a, f ; 4 : c; and 5 : c.

So the outcome is 1
10 a + 3

5 c + 1
5 d + 1

10 f .

Properties of RMEC
We observe that RMEC is both anonymous and neutral. The
RMEC outcome can be computed in time polynomial in the
input size. Since the contribution to an alternative by an
agent is 1/yn for some y ∈ {1, . . . ,m}, the probabilities are
rational.

Proposition 1 RMEC is anonymous and neutral. The
RMEC outcome can be computed in polynomial time O(m2n)
and consists of rational probabilities.

Next we note that if preferences are strict, then RMEC
is equivalent to random dictatorship. As a corollary, RMEC
satisfies both SD-efficiency and very strong SD-participation
under strict preferences. More interestingly, RMEC satisfies
very strong SD-participation even for weak orders.

Proposition 2 RMEC satisfies very strong SD-
participation.

Proof: Let us consider the RMEC outcome p when i ab-
stains and compare it with the RMEC outcome q when i
votes.

When i abstains, agent j ∈ N \ {i} contributes probabil-
ity weight 1/(n− 1) uniformly to alternatives in F( j, A,%−i).
Now consider the situation when i also votes. We want
to identify the alternatives j will contribute to. Our cen-
tral claim is that for each a ∈ F( j, A,%) and b ∈

max%i (F( j, A,%−i)), it is the case that a %i b. To prove the
claim, assume for contradiction that when i votes, j con-
tributes to some alternative b less preferred by i to a ∈
max%i (F( j, A,%−i). But this is not possible because b had at
most the same rank as a when i did not vote but since a �i b,
a will have strictly more rank than b when i votes. Hence
when i votes, agent j sends all his probability weight to ei-
ther alternatives in max%i (F( j, A,%−i)) or alternatives even
more preferred by i. Thus we have proved the claim. By
proving the claim, we have shown that when i participates,
any change in the relative contribution of some agent j , i
is in favour of agent i.

Take any b ∈ A and consider {a : a %i b}. Assume j is any
agent in N \ {i}. If j contributes anything (at most 1/(n − 1))
to {a : a %i b} when agent i abstains, then when i votes, j will
contribute 1/n to {a : a %i b} because of the central claim
proved above. Now, for the two scenarios where i votes or
abstains, the contribution difference from j to {a:a %i b} is at
most 1/n(n−1), and the total contribution difference from N\
{i} to {a:a %i b} is at most 1/n, which would be compensated
by the contribution of i to {a :a %i b} when i votes. Therefore
for each b ∈ A, q({a : a %i b}) ≥ p({a : a %i b}). Thus q %SD

i p
so RMEC satisfies strong SD-participation.

We now show that RMEC satisfies very strong SD-
participation. Suppose that p = RMEC(N, A,%−i) is such
that p(max%i (A)) < 1. It is sufficient to show that for q =



RMEC(N, A,%), q(max%i (A)) > p(max%i (A)). If some other
agent j’s relative contribution changes in favour of agent
i, we are already done. So let us assume that each j , i,
F( j, A,%−i) = F( j, A,%). When i votes, the total contribu-
tion to max%i (A) by agents other than i is p(max%i (A)) n−1

n .
The contribution of agent i to max%i (A) is 1

n . Hence

q(max
%i

(A)) =
n − 1

n
p(max
%i

(A)) +
1
n

(1)

=
n − 1

n
p(max
%i

(A)) +
1
n

(p(max
%i

(A)) + 1 − p(max
%i

(A)))

= p(max
%i

(A)) +
1
n

(1 − p(max
%i

(A))) > p(max
%i

(A))

The last inequality holds because we supposed that
p(max%i (A)) < 1 so that 1 − p(max%i (A)) > 0. Thus RMEC
satisfies very strong SD-participation. �

The fact that RMEC satisfies very strong SD-participation
is one the central results of the paper. We note here that very
strong SD-participation can be a tricky property to satisfy.
For example the following simple variants of RMEC vio-
late even strong SD-participation: (1) each agent contributes
to a most preferred Pareto optimal alternative or (2) each
agent contributes uniformly to Pareto optimal alternatives
most preferred by her.

Next, we prove that RMEC is also ex post efficient i.e.,
randomizes over Pareto optimal alternatives.

Proposition 3 RMEC is ex post efficient.

Proof: Each alternative a in the support is an alternative that
is the most preferred alternative of an agent i with the best
rank vector. Suppose the alternative a is not Pareto optimal.
Then there exists another alternative b such that b % j a for
all j ∈ N and b � j a for some j ∈ N. Note that since a is the
most preferred alternative of i, it follows that b ∼i a. Since
b Pareto dominates a, b is a most preferred alternative of i
with a better rank vector than a. But this contradicts the fact
that a is a most preferred alternative of i with the best rank
vector. �

Although RMEC is ex post efficient, it unfortunately does
not satisfy the stronger efficiency property of SD-efficiency.

Example 2 Consider the following preference profile with
dichotomous preferences.

1, 2, 3, 4 : d 5, 6 : {d, c} 7, 8 : {d, b}
9 : {a, b} 10 : {a, c}

The RMEC outcome is 8
10 d+ 1

10 c+ 1
10 b but is SD-dominated

by 9
10 d + 1

10 a.

In the example above, although each agent chooses those
most preferred alternatives that are most beneficial to other
agents, the agents do not coordinate to make these mutually
beneficial decisions. This results in a lack of SD-efficiency.
Although RMEC is not SD-efficient just like RSD, it has a
distinct advantage over RSD in terms of SD-efficiency.

Proposition 4 For any profile, if the RSD outcome is SD-
efficient, then the RMEC outcome is also SD-efficient. Fur-
thermore, there exist instances for which the RSD outcome
is not SD-efficient but the RMEC is not only SD-efficient but
SD-dominates the RSD outcome.

Proof: Due to the result of Aziz, Brandl, and Brandt (2015)
that SD-efficiency depends on the support, it is sufficient to
show that supp(RSD(N, A,%)) ⊇ supp(RMEC(N, A,%)).

Now suppose that a ∈ supp(RMEC(N, A,%)). We also
know that a ∈ F(i, A,%) for some i ∈ N. We prove that
a ∈ supp(RSD(N, A,%)) by showing that there exists one
permutation π under which serial dictatorship gives positive
probability to a. The first agent in the permutation π is i.

We build the permutation π so that a is an outcome of
serial dictatorship with respect to π. The working set W is
initialized to A. Agent i refines W to max%i(A). Now suppose
for contradiction that each remaining agent strictly prefers
some other alternative in W to a. In that case, a is not the
rank maximal alternative from max%i(A) which is a contradic-
tion to a ∈ F(i, A,%). Thus for some agent j not considered
yet, a is a most preferred alternative in W. We can add such
an agent to the permutation and let him refine and update W.
In W, a still remains rank maximal (with respect to agents
who have not been added to the permutation) among alter-
natives in W. We can continue identifying a new agent who
maximally prefers a in the latest version of W and append-
ing the agent to the permutation π until π is fully specified.
Note that a still remains in the working set which implies
that a ∈ supp(RSD(N, A,%)). This completes the proof that
if the RSD outcome is SD-efficient, then the RMEC outcome
is also SD-efficient.

Next we prove the second statement. Consider the follow-
ing preference profile.

1 : {a, c}, b, d 2 : {a, d}, b, c
3 : {b, c}, a, d 4 : {b, d}, a, c

The unique RSD lottery is p = 1/3 a+1/3 b+1/6 c+1/6d, which
is SD-dominated by 1/2 a + 1/2 b. This was observed by Aziz,
Brandt, and Brill (2013b).

We now compute the RMEC outcome. The rank vectors
are as follows: a : (2, 2, 0, 0); b : (2, 2, 0, 0); c : (2, 0, 2, 0);
and d : (2, 0, 2, 0). The agents choose alternatives as follows:
1 : a, 2 : a, 3 : b, 4 : b

RMEC returns the following lottery which is SD-efficient
and SD-dominates the RSD lottery: 1/2 a + 1/2 b. This com-
pletes the proof. �

Although RMEC is not SD-efficient in general, we give
experimental evidence that it returns SD-efficient outcomes
for most profiles. An exhaustive experiment shows that
RMEC is SD-efficient for every profile with 4 agents and 4
alternatives. Further experiments show that RMEC is SD-
efficient for almost all the profiles with n,m ≤ 8. In the
experiment, we generated profiles uniformly at random for
specified numbers of agents and alternatives so that each
preference is equiprobable, and examined whether the cor-
responding RMEC lottery is SD-efficient. The results are
shown in Table 2.



|A|
|N | 4 5 6 7 8

4 10,000 10,000 10,000 9,999 10,000
5 9,999 10,000 10,000 9,998 9,999
6 9,999 10,000 9,996 10,000 9,999
7 10,000 9,999 9,997 9,998 9,999
8 9,999 9,996 9,998 9,997 9,996

Table 2: The number of profiles for which the RMEC out-
come is SD-efficient out of 10,000 profiles generated uni-
formly at random for specified numbers of agents and alter-
natives.

Note that in general for any given preference profile with
some ties, a significant proportion of lotteries are not SD-
efficient. On the other hand, RMEC almost always returns
an SD-efficient lottery.

A similar experiment on RSD shows that the proportion
of profiles for which RSD generates an SD-efficient lottery
is consistently lower than that of RMEC. Table 3 shows the
outcome of RSD for 1000 profiles generated uniformly at
random for specified numbers of agents and alternatives. We
only ran it on 1000 profiles instead of 10,000 as RSD is sig-
nificantly slower to run than RMEC. For the experiment for
RSD, the program also checks if the RMEC outcome is SD-
efficient when the RSD outcome is not for a profile. There
is only one generated profile (7 agents, 4 alternatives) for
which the RMEC outcome is not SD-efficient.

|A|
|N| 4 5 6 7 8

4 1000 1000 998 998 1000
5 998 1000 994 999 1000
6 999 996 995 998 999
7 998 995 998 998 997
8 1000 996 991 993 997

Table 3: The number of profiles for which the RSD outcome
is SD-efficient out of 1000 profiles generated uniformly at
random for specified numbers of agents and alternatives.

We say that a lottery satisfies fair welfare share if each
agent gets at least 1/n of the maximum possible expected
utility he can get from any outcome. Fair welfare share
was originally defined by Bogomolnaia, Moulin, and Stong
(2005) for dichotomous preferences. We observe that since
RMEC gives at least 1/n probability to each agent’s first
equivalence class, it follows that each RMEC outcome sat-
isfies fair welfare share. Under dichotomous preferences, a
compelling property is that of proportional share (Duddy,
2015). We define it more generally for weak orders as fol-
lows. A lottery p satisfies proportional share if for any set
S ⊆ N,

∑
a∈A:∃i∈S s.t. a∈max%i (A) p(a) ≥ |S |/n. We note that pro-

portional share implies fair share.5 It is easy to establish that
RMEC satisfies proportional share.

Proposition 5 RMEC satisfies the proportional share prop-
erty and hence the fair share property.

5ESR does not satisfy proportional share and the maximal lot-
tery rule does not satisfy fair welfare share.

A different fairness requirement is that each agent finds
the outcome at least as preferred with respect to SD as the
uniform lottery. A PSCF f satisfies SD-uniformity if for
each profile %, f (%) %SD

i
1
m a1 + · · · + 1

m am for each i ∈ N.
RMEC does not satisfy SD-uniformity. However, we show
that SD-uniformity is incompatible with very strong SD-
participation.

Proposition 6 There exists no PSCF that satisfies very
strong SD-participation and SD-uniformity.

Proof: Consider the following preference profile.

1 : a, b, c 2 : c, b, a 3 : a, b, c

When 1 and 2 vote, SD-uniformity demands, that the out-
come is uniform. When 1, 2, 3 vote, SD-uniformity still de-
mands that the outcome is uniform. However very strong-
SD-participation demands that 3 should get strictly better
outcome with respect to SD. �

Whereas RMEC satisfies the strongest notion of participa-
tion, it can be shown to be vulnerable to strategic misreports.

On the other hand, if n ≤ 2, we can prove that RMEC
satisfies SD-strategyproofness. Also if preferences are strict
or if they are dichotomous, RMEC is SD-strategyproof. We
also note that RMEC satisfies a natural monotonicity prop-
erty: reinforcing an alternative in the agent’s preferences can
only increase its probability.

Discussion
In this paper, we continued the line of research concern-
ing strategic aspects in probabilistic social choice (see
e.g., (Aziz, 2013; Aziz, Brandl, and Brandt, 2014; Aziz,
Brandt, and Brill, 2013b; Brandl, Brandt, and Hofbauer,
2015a; Gibbard, 1977; Procaccia, 2010)). We proposed the
RMEC rule that satisfies very strong SD-participation and ex
post efficiency as well as various other desirable properties.
In view of its various properties, it is a useful PSCF with twi
key advantages over RSD. Unlike maximal lotteries (Brandt,
2017) and ESR (Aziz and Stursberg, 2014), RMEC is rela-
tively simple and does not require linear programming to
find the outcome lottery. The use of rank maximality also
makes it easier to deal with weak orders in a principled man-
ner.

A general approach. Consider a scoring vector s =
(s1, . . . , sm) such that s1 > · · · > sm. An alternative in the
j-th most preferred equivalence class of an agent is given
score s j. An alternative with the highest score is the one that
receives the maximum total score from the agents (see for
e.g., (Fishburn and Gehrlein, 1976) for discussion on posi-
tional scoring vectors). Note that an alternative is rank max-
imal if it achieves the maximum total score for a suitable
scoring vector (nm, nm−1, . . . , 1). We also note that RMEC is
defined in a way so that each agent gives 1/n probability to
his most preferred alternatives that have the best rank vec-
tor. The same approach can also be used to select the most
preferred alternatives that have the best Borda score or score
with respect to any decreasing positional scoring vector. We
refer to s-MEC as the maximal equal contribution rule with



respect to scoring vector s. In the rule, each agent identifies
F(i, A,%) the subset of alternatives in max%i (A) with the best
total score and uniformly distributes 1/n among alternatives
in F(i, A,%). The argument for very strong SD-participation
and ex post efficiency still works for any s-MEC rule. Any
s-MEC rule is also anonymous, neutral, single-valued, and
proportional share fair.

It will be interesting to see how RMEC fares on more
structured preferences (Anshelevich and Postl, 2016). Ran-
dom assignment rules (Bogomolnaia and Moulin, 2001;
Katta and Sethuraman, 2006) can be seen as applying a
PSCF to a voting problem with more structured prefer-
ences (see e.g., (Aziz and Stursberg, 2014)). It will be inter-
esting to see how RMEC will fare as a random assignment
rule especially in terms of SD-efficiency.

Acknowledgments
Haris Aziz is supported by a Julius Career Award.

References
Anshelevich, E., and Postl, J. 2016. Randomized social

choice functions under metric preferences. In Proceed-
ings of the 25th International Joint Conference on Artifi-
cial Intelligence (IJCAI), 46–59. AAAI Press.

Aziz, H., and Stursberg, P. 2014. A generalization of proba-
bilistic serial to randomized social choice. In Proceed-
ings of the 28th AAAI Conference on Artificial Intelli-
gence (AAAI), 559–565. AAAI Press.

Aziz, H.; Brandl, F.; and Brandt, F. 2014. On the incompat-
ibility of efficiency and strategyproofness in randomized
social choice. In Proceedings of the 28th AAAI Confer-
ence on Artificial Intelligence (AAAI), 545–551. AAAI
Press.

Aziz, H.; Brandl, F.; and Brandt, F. 2015. Universal Pareto
dominance and welfare for plausible utility functions.
Journal of Mathematical Economics 60:123–133.

Aziz, H.; Brandt, F.; and Brill, M. 2013a. The computational
complexity of random serial dictatorship. Economics Let-
ters 121(3):341–345.

Aziz, H.; Brandt, F.; and Brill, M. 2013b. On the trade-
off between economic efficiency and strategyproofness in
randomized social choice. In Proceedings of the 12th In-
ternational Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), 455–462. IFAAMAS.

Aziz, H. 2013. Maximal Recursive Rule: A New Social
Decision Scheme. In Proceedings of the 23nd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
34–40. AAAI Press.

Bogomolnaia, A., and Moulin, H. 2001. A new solution
to the random assignment problem. Journal of Economic
Theory 100(2):295–328.

Bogomolnaia, A.; Moulin, H.; and Stong, R. 2005. Col-
lective choice under dichotomous preferences. Journal of
Economic Theory 122(2):165–184.

Brandl, F.; Brandt, F.; and Hofbauer, J. 2015a. Incentives for
participation and abstention in probabilistic social choice.
In Proceedings of the 14th International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS),
1411–1419. IFAAMAS.

Brandl, F.; Brandt, F.; and Hofbauer, J. 2015b. Wel-
fare maximization entices participation. Technical report,
http://arxiv.org/abs/1508.03538.

Brandl, F.; Brandt, F.; and Seedig, H. G. 2016. Consistent
probabilistic social choice. Econometrica 84(5):1839–
1880.

Brandt, F. 2017. Rolling the dice: Recent results in proba-
bilistic social choice. In Endriss, U., ed., Trends in Com-
putational Social Choice. AI Access. chapter 1. Forth-
coming.

Cho, W. J. 2012. Probabilistic assignment: A two-fold ax-
iomatic approach. Mimeo.

Duddy, C. 2015. Fair sharing under dichotomous prefer-
ences. Mathematical Social Sciences 73:1–5.

Featherstone, C. R. 2011. A rank-based refinement of or-
dinal efficiency and a new (but familiar) class of ordinal
assignment mechanisms.

Fishburn, P. C., and Brams, S. J. 1983. Paradoxes of prefer-
ential voting. Mathematics Magazine 56(4):207–214.

Fishburn, P. C., and Gehrlein, W. V. 1976. Borda’s rule,
positional voting, and Condorcet’s simple majority prin-
ciple. Public Choice 28(1):79–88.

Gibbard, A. 1977. Manipulation of schemes that mix voting
with chance. Econometrica 45(3):665–681.

Gross, S.; Anshelevich, E.; and Xia, L. 2017. Vote until
two of you agree: Mechanisms with small distortion and
sample complexity. In Proceedings of the 31st AAAI Con-
ference on Artificial Intelligence (AAAI), 544–550.

Katta, A.-K., and Sethuraman, J. 2006. A solution to the ran-
dom assignment problem on the full preference domain.
Journal of Economic Theory 131(1):231–250.

Michail, D. 2007. Reducing rank-maximal to maximum
weight matching. Theoretical Computer Science 389(1-
2):125–132.

Moulin, H. 1988. Condorcet’s principle implies the no show
paradox. Journal of Economic Theory 45(1):53–64.

Moulin, H. 2003. Fair Division and Collective Welfare. The
MIT Press.

Procaccia, A. D. 2010. Can approximation circumvent
Gibbard-Satterthwaite? In Proceedings of the 24th AAAI
Conference on Artificial Intelligence (AAAI), 836–841.
AAAI Press.


