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Abstract

We consider a committee voting setting in which each voter approves of a sub-
set of candidates and based on the approvals, a target number of candidates
are to be selected. In particular we focus on the axiomatic property called ex-
tended justified representation (EJR). Although a committee satisfying EJR is
guaranteed to exist, the computational complexity of finding such a committee
has been an open problem and explicitly mentioned in multiple recent papers.
We settle the complexity of finding a committee satisfying EJR by presenting a
polynomial-time algorithm for the problem. Our algorithmic approach may be
useful for constructing other multi-winner voting rules.
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1. Introduction

The topic of multi-winner/committee voting has witnessed a renaissance
with a number of new and interesting developments in the last few years (see
[1, 7] for recent surveys). We consider a committee voting setting in which each
voter approves of a subset of candidates and based on the approvals, a target k
number of candidates are selected. The setting has been referred to as approval-
based multi-winner voting or committee voting with approvals. The setting has
inspired a number of natural voting rules [9, 5, 10, 4, 15]. Many of the voting
rules attempt to satisfy some notion of representation. However it has been far
from clear what axiom captures the representation requirements.
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Aziz et al. [2, 3] proposed two compelling representation axioms called justi-
fied representation (JR) and extended justified representation (EJR). Interest-
ingly, Sánchez-Fernández et al. [13] presented an intermediate property called
proportional justified representation (PJR). The idea behind all the three prop-
erties is that a cohesive and large enough group deserves sufficient number of
approved candidates in the winning set of candidates. Interestingly, it is known
that there always exists a committee satisfying the strongest property EJR [3].
However to date, it has been unknown whether a committee satisfying EJR
can be computed in polynomial time. For the two weaker representation no-
tions, polynomial-time algorithms have been presented for finding a committee
satisfying JR [2, 3]1 and PJR [6, 14]2. On the other hand, the computational
complexity of finding a committee satisfying EJR has been open. Aziz et al.
[2, 3] mentioned the problem in their original paper. The problem has been
reiterated in subsequent work. Brill et al. [6] state that

“it remains an open problem whether committees providing EJR can
be computed efficiently.”

Sánchez-Fernández et al. [14] mention the same problem:

“Whether a voting rule exists that satisfies the extended justified rep-
resentation and can be computed in polynomial time remains an open
issue.”

In a different paper, Sánchez-Fernández et al. [12] state the following.

“In contrast, it is conjectured that finding committees that provide
EJR is computationally hard.”

Incidentally, there exists an interesting rule called PAV (Proportional Ap-
proval Voting) that satisfies EJR [3]. In PAV , each voter is viewed as getting an
additional score of 1/j for getting the j-th approved candidate in the committee.
The PAV rule returns a committee with the highest total PAV score for the
voters. The PAV rule has a fascinating history as it was proposed by the Dan-
ish polymath Thorvald N. Thiele in the 19th century and then rediscovered by
Forrest Simmons [8]. Finding a PAV outcome is NP-hard [4, 15] and W[1]-hard
even if each voter approves of 2 candidates [4]. Thiele also presented a greedy
sequential version of PAV. The rule that is referred to as SeqPAV (Sequential
PAV) or RAV (reweighted approval voting) does not even satisfy JR [3].

One natural approach to find a committee satisfying EJR is to enumer-
ate possible committees and then test them for EJR. However the number

1For JR, a simple linear-time algorithm call GreedyAV finds a committee satisfying JR.
2It has recently been shown that a committee satisfying PJR can be computed in poly-

nomial time. Brill et al. [6] proved that SeqPhragmén (an algorithm proposed by Swedish
mathematician Phragmén in the 19th century) is polynomial-time and returns a committee
satisfying PJR. Independently and around the same time as the result by Brill et al. [6],
Sánchez-Fernández et al. [14] presented a different algorithm that finds a PJR committee and
also satisfies other desirable monotonicity axioms.
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of committees is exponential and even testing whether a committee satisfies
EJR is coNP-complete [3]. Aziz et al. [3] presented a result that implies that
if k is a constant, then a committee satisfying EJR can be computed in time
poly(n · |C|k). The result does not show that finding a committee satisfying
EJR is polynomial-time solvable in general or whether it is fixed parametrized
tractable.

Contributions. We present the first polynomial-time algorithm to find a com-
mittee that satisfies EJR. The result implies that there exists a polynomial-time
algorithm to find a committee that satisfies the weaker property of PJR. As
mentioned earlier, it has only recently been proven in two independent papers
that a committee satisfying PJR can be computed in polynomial time [6, 14].
Both of the algorithms in [6] and [14] sequentially build a committee while op-
timizing some flow or load balancing objective. In contrast, our algorithm uses
an approach based on swapping candidates from inside a committee with can-
didates from outside the committee. The correctness of our algorithm relies on
a careful insight on the connection between EJR and a property we refer to as
PAV -swap-freeness. We feel that this simple idea of allowing swaps may lead
to other interesting algorithms for EJR as well as other compelling properties
in multi-winner voting problems.

2. Approval-based Committee Voting and Representation Properties

We consider a social choice setting with a set N = {1, . . . , n} of voters
and a set C of m candidates. Each voter i ∈ N submits an approval ballot
Ai ⊆ C, which represents the subset of candidates that she approves of. We
refer to the list ~A = (A1, . . . , An) of approval ballots as the ballot profile. We will
consider approval-based multi-winner voting rules that take as input a quadruple
(N,C, ~A, k), where k is a positive integer that satisfies k ≤ m, and return a
subset W ⊆ C of size k, which we call the winning set, or committee.

Definition 1 (Justified representation (JR)). Given a ballot profile ~A =
(A1, . . . , An) over a candidate set C and a target committee size k, we say
that a set of candidates W of size |W | = k satisfies justified representation for

( ~A, k) if

∀X ⊆ N : |X| ≥ n

k
and | ∩i∈X Ai| ≥ 1 =⇒ (|W ∩ (∪i∈XAi)| ≥ 1)

The rationale behind this definition is that if k candidates are to be selected,
then, intuitively, each group of n

k voters “deserves” a representative. Therefore,
a set of n

k voters that have at least one candidate in common should not be
completely unrepresented.

Definition 2 (Proportional Justified Representation (PJR)). Given a ballot
profile (A1, . . . , An) over a candidate set C, a target committee size k, k ≤ m,
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and integer ` we say that a set of candidates W , |W | = k, satisfies `-proportional

justified representation for ( ~A, k) if

∀X ⊆ N : |X| ≥ `
n

k
and | ∩i∈X Ai| ≥ ` =⇒ (|W ∩ (∪i∈XAi)| ≥ `)

We say that W satisfies proportional justified representation for ( ~A, k) if it

satisfies `-proportional justified representation for ( ~A, k) and all integers ` ≤ k.

Definition 3 (Extended justified representation (EJR)). Given a ballot profile
(A1, . . . , An) over a candidate set C, a target committee size k, k ≤ m, we say
that a set of candidates W , |W | = k, satisfies `-extended justified representation

for ( ~A, k) and integer ` if

∀X ⊆ N : |X| ≥ `
n

k
and | ∩i∈X Ai| ≥ ` =⇒ (∃i ∈ X : |W ∩Ai| ≥ `).

We say that W satisfies extended justified representation for ( ~A, k) if it

satisfies `-extended justified representation for ( ~A, k) and all integers ` ≤ k.

It is easy to observe that EJR implies PJR which implies JR. So any com-
mittee that satisfies EJR also satisfies the other two properties.

3. PAV-score and Swaps

The PAV -score of a voter i for a committee W is

H(|W ∩Ai|)

where

H(p) =

{
0, for p = 0∑p

j=1
1
j , for p > 0.

The PAV -score of a committee W ⊆ C is defined as∑
i∈N

H(|W ∩Ai|).

The PAV rule that we discussed in the introduction outputs a set W ⊆ C
of size k with the highest PAV -score.

We say that a committee W such that |W | = k satisfies PAV -swap-freeness
if there exists no c′ ∈ W, c ∈ C \ W s.t. PAV-score((W \ {c′}) ∪ {c}) >
PAV-score((W )). Note that if a committee W has the highest possible PAV -
score, it satisfies PAV -swap-freeness.

We now define marginal contribution as used in [3]. For each candidate
w ∈W , we define MC(w,W ) its marginal contribution as the difference between
the PAV -score of W and that of W \ {w}:

MC(w,W ) = PAV-score((W )− PAV-score((W \ {w}).
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Let MC(W ) denote the sum of marginal contributions of all candidates in
W :

MC(W ) =
∑
w∈W

MC(w,W ).

We now formally state as a lemma an observation that was already made in
[3].

Lemma 1. For any committee W such that |W | = k,
∑

c∈W MC(c,W ) ≤
|{i ∈ N : Ai ∩W 6= ∅}|. Moreover there exists at least one c ∈ W such that
MC(c,W ) ≤ |{i ∈ N : Ai ∩W 6= ∅}|/k ≤ n/k.

Proof. Pick a voter i ∈ N , and let j = |Ai ∩W |. If j > 0, this voter contributes
exactly 1

j to the marginal contribution of each candidate in Ai ∩W , and hence

her contribution to MC(W ) is exactly 1. If j = 0, this voter does not contribute
to MC(W ) at all. Therefore, we have MC(W ) =

∑
c∈W MC(c,W ) ≤ |{i ∈

N : Ai ∩W 6= ∅}| ≤ n. Since there are exactly k candidates, there exists some
c ∈W such that MC(c,W ) ≤ |{i ∈ N : Ai ∩W 6= ∅}|/k ≤ n/k.

We now prove that if a committee satisfies PAV -swap-freeness, then it sat-
isfies EJR. The argument is almost identical to the argument that the outcome
of PAV satisfies EJR [3]. However, we reproduce it just for the sake of com-
pleteness because we will further refine this argument.

Lemma 2. If a committee satisfies PAV -swap-freeness, then it satisfies EJR.

Proof. Suppose that there is a committee W such that |W | = k that satisfies
PAV -swap-freeness but violates EJR. Since W violates EJR, there is a value
of ` ≥ 1 and a set of voters N∗, |N∗| = s ≥ ` · nk . We know that at least one
of the ` candidates approved by all voters in N∗ is not elected; let c be some
such candidate. Each voter in N∗ has at most ` − 1 representatives in W , so
the marginal contribution of c (if it were to be added to W ) would be at least
s · 1` ≥

n
k . On the other hand, by Lemma 1, we have

∑
c∈W MC(c,W ) ≤ n.

Now, consider some candidate w ∈ W with the smallest marginal contribu-
tion; clearly, his marginal contribution is at most n

k . If it is strictly less than
n
k , we are done, as we can improve the total PAV -score by swapping w and c,
a contradiction.

Therefore suppose it is exactly n
k , and therefore the marginal contribution

of each candidate in W is exactly n
k . We know that Ai∩W 6= ∅ for each i ∈ N∗,

because otherwise
∑

w′∈W MC(w′,W ) ≤ n−1 (by Lemma 1) which implies that
the marginal contribution of w is less than n

k . Hence we know that Ai ∩W 6= ∅
for all i ∈ N∗. Pick some candidate w′ ∈ W ∩ Ai for some i ∈ N∗, and set
W ′ = (W \ {w′}) ∪ {c}. Observe that after w′ is removed, adding c increases
the total PAV -score by at least

(s− 1) · 1

`
+

1

`− 1
>

s

`
≥ n/k.

Thus, the PAV -score of W ′ is higher than that of W , a contradiction again.
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Although PAV -swap-freeness is a much weaker property than maximizing
total PAV -score, it is surprising that it already implies EJR. In the next section,
this insight helps us to come up with useful algorithms.

4. MaxSwapPAV

Based on PAV -score improving swaps, one can formulate the following al-
gorithm called SwapPAV.

SwapPAV: Start from a random committee of size k. Keep imple-
menting swaps that increase the total PAV -score of the committee
while such a swap is possible. Return the committee if no more
improving swaps are possible.

Our first observation is that Swap-PAV always terminates. The reason is that
each time we implement the swap, the PAV-score of the committee increases.
This can only happen finitely often as PAV-score((W ) ≤ nH(k) ≤ n(ln k + 1)
for any committee W of size k. In fact, one can easily prove that with each
improving swap, the PAV -score increases by at least 1/k! so that that the total
number of swaps cannot exceed n(ln k + 1)k!. This observation already gives us
the first FPT algorithm for finding a committee satisfying EJR.

We now show how we can modify SwapPAV to find a committee satisfying
EJR in polynomial time. We modify SwapPAV as follows. If W is not PAV -
swap-free, then we look at all possible swaps and only implement the swap which
makes biggest difference to the PAV -score. We impose an extra condition that
we only swap if the improvement in the total PAV -score is at least 1

2k3 . The
algorithm is specified as Algorithm 1 (MaxSwapPAV).

Algorithm 1 MaxSwapPAV

Require: (N, ~A, k).
Ensure: W

1: W ←− any committee of size k.
2: while ∃c′ ∈W, c ∈ C\W s.t. PAV-score((W \{c′})∪{c})−PAV-score(W ) ≥

1/2k3 do
3: for each c′ ∈W, c ∈ C \W do
4: diff(c, c′) = PAV-score((W \ {c′}) ∪ {c})− PAV-score(W )
5: end for
6: Find c′ ∈W, c ∈ C \W with the maximum diff(c, c′).
7: W ←− (W \ {c′}) ∪ {c}
8: end while
9: return W .

We now argue why MaxSwapPAV returns a committee satisfying EJR and
it terminates in polynomial time. The most crucial lemma for both statements
is Lemma 3. The lemma is stronger than Lemma 2 and requires a more careful
analysis.
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Lemma 3. Suppose that W does not satisfy EJR, then there exist c′ ∈ W, c ∈
C \W s.t. PAV-score((W \ {c′}) ∪ {c})− PAV-score((W )) ≥ 1/2k3.

Proof. Since W violates EJR, there is a value of ` ≥ 1 and a set of voters N∗,
|N∗| = s ≥ ` · nk . We know that at least one of the ` candidates approved by all
voters in N∗ is not elected; let c be some such candidate. Each voter in N∗ has
at most `− 1 representatives in W , so the marginal contribution of c (if it were
to be added to W ) would be at least s · 1` ≥

n
k .

Let w ∈W be the candidate with smallest marginal contribution. By Lemma
1, MC(w,W ) ≤ n

k . If MC(w,W ) ≤ n
k −

1
2k3 , then replacing w with c results in

a committee W ′ with PAV-score increasing by at least 1
2k3 , and so we are done.

So, we assume that MC(w,W ) > n
k −

1
2k3 . This implies that MC(w′,W ) >

n
k −

1
2k3 for every w′ ∈ W . Since

∑
w′∈W MC(w′,W ) ≤ n, we use this fact to

find the maximum possible marginal contribution among all candidates in W .
Let the maximum marginal contribution be MC(b,W ) of candidate b. In that
case we know that ∑

w′∈W
MC(w′,W ) ≤ n

⇐⇒
∑

w′∈W\{b}

MC(w′,W ) + MC(b,W ) ≤ n

⇐⇒MC(b,W ) ≤ n−
∑

w′∈W\{b}

MC(w′,W )

=⇒MC(b,W ) < n− (k − 1)(
n

k
− 1

2k3
)

⇐⇒MC(b,W ) <
(2nk3 − 2nk3 + 2nk2 + k − 1)

2k3

⇐⇒MC(b,W ) <
n

k
+

1

2k2
− 1

2k3
<

n

k
+

1

2k2
.

Hence, it follows that MC(w′,W ) < n
k + 1

2k2 for every w′ ∈W .
We now claim that there is a candidate w′ ∈ W that is also in

⋃
i∈N∗ Ai.

Suppose not. This means that no one in N∗ approves of anybody in W and so
by Lemma 1,

∑
w′∈W MC(w′,W ) ≤ |N \ N∗| ≤ n − n

k . Thus, MC(w,W ) ≤
n
k −

n
k2 < n

k −
1

2k3 , contradicting our assumption that MC(w,W ) > n
k −

1
2k3 .

Now pick any w′ ∈ W ∩
⋃

i∈N∗ Ai. As w ∈
⋃

i∈N∗ Ai, this implies that |Ai ∩
(W \ {w′})| ≤ ` − 2 for some i ∈ N∗. Hence, MC(c, (W \ {w′}) ∪ {c}) would
be at least n

k + 1
`−1 −

1
` ≥

n
k + 1

k2 . Therefore, replacing w′ with c results in

a committee W ′ with PAV-score increasing by at least 1
k2 − 1

2k2 = 1
2k2 ≥ 1

2k3 .
This proves the lemma.

Lemma 3 is the foundation for proving the main properties of the MaxSwap-
PAV algorithm.

Proposition 1. MaxSwapPAV returns a committee that satisfies EJR.
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Proof. MaxSwapPAV returns a committee W such that there exist no c′ ∈ W
and c ∈ C \W s.t. PAV-score((W \ {c′})∪{c})−PAV-score((W )) ≥ 1/2k3. By
Lemma 3, such a committee satisfies EJR.

Proposition 2. MaxSwapPAV runs in polynomial time O(n2mk4 ln k).

Proof. We first show that the total number of swaps in MaxSwapPAV cannot
exceed 2n(ln k + 1)k3. In Lemma 3, we proved that each swap in the algorithm
improves the PAV -score by at least 1

2k3 . Since the PAV score of any committee
cannot exceed n(ln k+1), there can be at most 2n(ln k+1)k3 swaps. Each swap
requires examining O(km) pairs of candidates. For each pair, we need to make
O(n) operations.

It follows from the two propositions above that MaxSwapPAV returns a
committee satisfying EJR in polynomial time.

5. Discussion

To conclude, we presented the first polynomial-time algorithm for finding
a committee that satisfies EJR. In Table 1, we summarize the justified repre-
sentation related properties satisfied by different polynomial-time algorithms in
the literature.

JR PJR EJR
Rules

MaxSwapPAV (this paper) X X X
SeqPhragmén [6, 11] X X 7
Open DHondt (ODH) [14] X X 7
GreedyAV [3, 16] X 7 7
SeqPAV [16] 7 7 7

Table 1: Related and known polynomial-time algorithms for approval-based committee voting.

Our result shows that EJR is as amenable to efficient computation as PJR.
Depending on particular specifications, our algorithm to find a committee sat-
isfying EJR can also used to formulate particular voting rules.

Skowron et al. [15] mentioned that SeqPAV can be seen as a desirable ap-
proximation algorithm for PAV. Our alternative approach of allowing exchanges
rather than sequentially building a committee seems to be closer to one of the
defining features of PAV that it satisfies EJR.

The approach of implementing swaps of candidates also makes it possible
to move towards fairer representation from a default committee without having
to disband the whole committee. The swapping procedure can also be used
as post-processing step after running any other committee rule. If the initial
committee is the outcome of SeqPAV, then we know that the committee already
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guarantees at least (1 − 1
e ) of the maximum possible PAV -score [15]. Hence it

follows that subsequent PAV -score improving swaps can only further increase
the score.

Our algorithmic result also adds a new talking point to the debate between
the harmonic scoring approach of Thiele versus the load balancing approach of
Phragmén that started over a hundred years ago [8]. Note that Brill et al. [6]
showed that SeqPhragmén—one of the efficient algorithms within Phragmén’s
framework of multi-winner rules—satisfies PJR. On the other hand, SeqPAV
the well-known polynomial-time algorithm using Thiele’s approach of harmonic
weights does not even satisfy JR. However, we have shown that by allowing
swaps of candidates, one can satisfy EJR which is stronger than PJR.
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