References

  1. Francisco Botana, Markus Hohenwarter, Predrag Janiči\'c, Zoltán Kovács, Ivan Petrovi\'c, Tomás Recio & Simon Weitzhofer (2015): Automated Theorem Proving in GeoGebra: Current Achievements. Journal of Automated Reasoning 55(1), pp. 39–59, doi:10.1007/s10817-015-9326-4.
  2. Francisco Botana & Pedro Quaresma (2015): Automated Deduction in Geometry, 10th International Workshop, ADG 2014. Lecture Notes in Artificial Intelligence 9201. Springer, doi:10.1007/978-3-319-21362-0.
  3. Pierre Boutry, Julien Narboux, Pascal Schreck & Gabriel Braun (2014): Using small scale automation to improve both accessibility and readability of formal proofs in geometry. In: Francisco Botana & Pedro Quaresma: Preliminary Proceedings of the 10th International Workshop on Automated Deduction in Geometry, ADG 2014, Coimbra, Portugal, 9–11 July, 2014, CISUC Tech Reports TR 2014/01, pp. 31–49. Available at https://www.cisuc.uc.pt/ckfinder/userfiles/files/TR 2014-01.pdf.
  4. Nicolaas Govert de Bruijn (1994): A Survey of the Project Automath, chapter A Survey of the Project Automath, pp. 141–161, Studies in Logic and the Foundations of Mathematics 133. North Holland, doi:10.1016/S0049-237X(08)70203-9.
  5. S.C. Chou (1985): Proving and discovering geometry theorems using Wu's method. The University of Texas, Austin.
  6. Shang-Ching Chou (1988): Mechanical Geometry Theorem Proving. Mathematics and Its Applications 41. D. Reidel Publishing Company.
  7. Shang-Ching Chou, Xiao-Shan Gao & Jing-Zhong Zhang (1994): A Collection of 110 Geometry Theorems and Their Machine Produced Proofs Using Full-Angles. Technical Report TR-94-4. Department of Computer Science, Wichita State University. Available at https://www.researchgate.net/publication/239564904.
  8. Shang-Ching Chou, Xiao-Shan Gao & Jing-Zhong Zhang (1994): Machine Proofs in Geometry: Automated Production of Readable Proofs for Geometry Problems. Applied Mathematics 6. World Scientific, doi:10.1142/9789812798152. Available at https://www.researchgate.net/publication/240102887.
  9. Shang-Ching Chou, Xiao-Shan Gao & Jing-Zhong Zhang (1996): Automated Generation of Readable Proofs with Geometric Invariants: I. Multiple and Shortest Proof Generation. Journal of Automated Reasoning 17(3), pp. 325–347, doi:10.1007/bf00283133.
  10. Shang-Ching Chou, Xiao-Shan Gao & Jing-Zhong Zhang (1996): Automated Generation of Readable Proofs with Geometric Invariants: II. Theorem Proving With Full-Angles. Journal of Automated Reasoning 17(3), pp. 349–370, doi:10.1007/BF00283134.
  11. Shang-Ching Chou, Xiao-Shan Gao & Jing-Zhong Zhang (2000): A Deductive Database Approach to Automated Geometry Theorem Proving and Discovering. Journal of Automated Reasoning 25(3), pp. 219–246, doi:10.1023/A:1006171315513.
  12. Helder Coelho & Luis Moniz Pereira (1986): Automated Reasoning in Geometry Theorem Proving with Prolog. Journal of Automated Reasoning 2(4), pp. 329–390, doi:10.1007/BF00248249.
  13. H. Gelernter (1995): Realization of a geometry-theorem proving machine. In: Computers & thought. MIT Press, Cambridge, MA, USA, pp. 134–152 * .
  14. Predrag Janiči\'c, Julien Narboux & Pedro Quaresma (2012): The Area Method: A Recapitulation. Journal of Automated Reasoning 48(4), pp. 489–532, doi:10.1007/s10817-010-9209-7.
  15. Predrag Janiči\'c & Pedro Quaresma (2006): System Description: GCLCprover + GeoThms. In: Ulrich Furbach & Natarajan Shankar: Automated Reasoning: Third International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17–20, 2006, Proceedings, Lecture Notes in Artificial Intelligence 4130. Springer, pp. 145–150, doi:10.1007/11814771_13.
  16. Predrag Janiči\'c & Pedro Quaresma (2007): Automatic Verification of Regular Constructions in Dynamic Geometry Systems. In: Francisco Botana & Tomás Recio: Automated Deduction in Geometry: 6th International Workshop, ADG 2006, Pontevedra, Spain, August 31–September 2, 2006, Revised Papers, Lecture Notes in Artificial Intelligence 4869. Springer, pp. 39–51, doi:10.1007/978-3-540-77356-6_3.
  17. Jianguo Jiang & Jingzhong Zhang (2012): A review and prospect of readable machine proofs for geometry theorems. Journal of Systems Science and Complexity 25(4), pp. 802–820, doi:10.1007/s11424-012-2048-3.
  18. Deepak Kapur (1986): Using Gröbner bases to reason about geometry problems. Journal of Symbolic Computation 2(4), pp. 399–408, doi:10.1016/S0747-7171(86)80007-4.
  19. Zoltán Kovács (2015): The Relation Tool in GeoGebra 5, pp. 53–71, Lecture Notes in Artificial Intelligence 9201. Springer International Publishing, doi:10.1007/978-3-319-21362-0_4.
  20. H. Li (2000): Clifford algebra approaches to mechanical geometry theorem proving. In: X.-S. Gao & D. Wang: Mathematics Mechanization and Applications. Academic Press, San Diego, CA, pp. 205–299, doi:10.1016/B978-012734760-8/50009-0.
  21. Julien Narboux (2009): Formalization of the Area Method. Coq user contribution. http://dpt-info.u-strasbg.fr/~narboux/area_method.html.
  22. Juan Paneque, Pedro Cobo, Josep Fortuny & Philippe R. Richard (2016): Argumentative Effects of a Geometric Construction Tutorial System in Solving Problems of Proof. In: Proceedings of the 4th International Workshop on Theorem proving components for Educational software July 15, 2015 Washington, D.C., USA, CISUC Technical Reports 2016-001, pp. 13–35. Available at https://www.cisuc.uc.pt/ckfinder/userfiles/files/TR 2016-01.pdf.
  23. Pedro Quaresma (2011): Thousands of Geometric Problems for Geometric Theorem Provers (TGTP). In: Pascal Schreck, Julien Narboux & Jürgen Richter-Gebert: Automated Deduction in Geometry, Lecture Notes in Computer Science 6877. Springer, pp. 169–181, doi:10.1007/978-3-642-25070-5_10.
  24. Pedro Quaresma (2017): Towards an Intelligent and Dynamic Geometry Book. Mathematics in Computer Science 11(3–4), pp. 427–437, doi:10.1007/s11786-017-0302-8.
  25. Pedro Quaresma & Nuno Baeta (2015): Current Status of the I2GATP Common Format. In: Francisco Botana & Pedro Quaresma: Automated Deduction in Geometry: 10th International Workshop, ADG 2014, Coimbra, Portugal, July 9–1, 2014, Revised Selected Papers, Lecture Notes in Artificial Intelligence 9201. Springer, pp. 119–128, doi:10.1007/978-3-319-21362-0_8.
  26. Pedro Quaresma, Vanda Santos, Pierluigi Graziani & Nuno Baeta (2019): Taxonomies of geometric problems. Journal of Symbolic Computation. (in press), doi:10.1016/j.jsc.2018.12.004.
  27. Philippe Richard, Pedro Cobo, Josep Fortuny & Markus Hohenwarter (2009): Training teachers to manage problem-solving classes with computer support. Revista de Inform\begingroupłet [Pleaseinsert\PrerenderUnicode√°intopreamble]tica Aplicada / Journal of Applied Computing 5(1), pp. 38–50, doi:10.13037/rasvol5n1.
  28. Mary Budd Rowe (1972): Wait-Time and Rewards as Instructional Variables: Their Influence on Language, Logic, and Fate Control. Technical Report. National Association for Research in Science Teaching. Available at https://files.eric.ed.gov/fulltext/ED061103.pdf.
  29. Robert J. Stahl (1994): Using ''Think-Time'' and ''Wait-Time'' Skillfully in the Classroom. Technical Report. ERIC Digest. Available at http://files.eric.ed.gov/fulltext/ED370885.pdf.
  30. Sana Stojanovi\'c, Vesna Pavlovi\'c & Predrag Janiči\'c (2011): A Coherent Logic Based Geometry Theorem Prover Capable of Producing Formal and Readable Proofs. In: Pascal Schreck, Julien Narboux & Jürgen Richter-Gebert: Automated Deduction in Geometry: 8th International Workshop, ADG 2010, Munich, Germany, July 22-24, 2010, Revised Selected Papers, Lecture Notes in Artificial Intelligence 6877. Springer, pp. 201–220, doi:10.1007/978-3-642-25070-5_12.
  31. Geoffrey Sutcliffe (2016): The 8th IJCAR automated theorem proving system competition - CASC-J8. AI Communications 29(5), pp. 607–619, doi:10.3233/AIC-160709.
  32. D. Wang (1995): Reasoning about geometric problems using an elimination method. In: J. Pfalzgraf & D. Wang: Automated Pratical Reasoning. Springer, New York, pp. 147–185, doi:10.1007/978-3-7091-6604-8_8.
  33. Freek Wiedijk (2000): The de Bruijn factor. Poster at International Conference on Theorem Proving in Higher Order Logics (TPHOL2000). Portland, Oregon, USA, 14-18 August 2000.
  34. W.T. Wu (1984): Automated Theorem Proving: After 25 Years, chapter On the decision problem and the mechanization of theorem proving in elementary geometry, pp. 213–234 29. American Mathematical Society, doi:10.1090/conm/029.
  35. Zheng Ye, Shang-Ching Chou & Xiao-Shan Gao (2010): Visually Dynamic Presentation of Proofs in Plane Geometry: Part 1. Basic Features and the Manual Input Method. Journal of Automated Reasoning 45(3), pp. 213–241, doi:10.1007/s10817-009-9162-5.
  36. Zheng Ye, Shang-Ching Chou & Xiao-Shan Gao (2010): Visually Dynamic Presentation of Proofs in Plane Geometry: Part 2. Automated Generation of Visually Dynamic Presentations with the Full-Angle Method and the Deductive Database Method. Journal of Automated Reasoning 45(3), pp. 243–266, doi:10.1007/s10817-009-9163-4.
  37. Zheng Ye, Shang-Ching Chou & Xiao-Shan Gao (2011): An Introduction to Java Geometry Expert. In: Thomas Sturm & Christoph Zengler: Automated Deduction in Geometry, Lecture Notes in Computer Science 6301. Springer Berlin Heidelberg, pp. 189–195, doi:10.1007/978-3-642-21046-4_10.
  38. Jing-Zhong Zhang, Shang-Ching Chou & Xiao-Shan Gao (1995): Automated production of traditional proofs for theorems in Euclidean geometry: I. The Hilbert intersection point theorems. Annals of Mathematics and Artificial Intelligence 13(1–2), pp. 109–137, doi:10.1007/BF01531326.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org