References

  1. Nuno Baeta & Pedro Quaresma (2022): A Geometry Deductive Database Prover. Annals of Mathematics and Artificial Intelligence. in press.
  2. Shang-Ching Chou & Xiao-Shan Gao (2001): Automated Reasoning in Geometry. In: John Alan Robinson & Andrei Voronkov: Handbook of Automated Reasoning. Elsevier Science Publishers B.V., pp. 707–749, doi:10.1016/B978-044450813-3/50013-8.
  3. Shang-Ching Chou, Xiao-Shan Gao & Jing-Zhong Zhang (1996): Automated generation of readable proofs with geometric invariants, II. Theorem Proving With Full-Angles. Journal of Automated Reasoning 17(3), pp. 349–370, doi:10.1007/BF00283134.
  4. Shang-Ching Chou, Xiao-Shan Gao & Jing-Zhong Zhang (2000): A Deductive Database Approach to Automated Geometry Theorem Proving and Discovering. Journal of Automated Reasoning 25(3), pp. 219–246, doi:10.1023/A:1006171315513.
  5. Ministério da Educação e Ciência [MEC] (2013): Programa de Matemática para o Ensino Básico. Lisboa: Ministério da Educação e Ciência.. Available at https://www.dge.mec.pt/sites/default/files/Basico/Metas/Matematica/programa_matematica_basico.pdf.
  6. R Duval (1998): Geometry from a cognitive point of view. Perspectives on the Teaching of Geometry for the 21st century: an ICMI study. Kluwer Academic, pp. 37–51.
  7. Direção-Geral da Educação [DGE] (2018): Aprendizagens essenciais: Articulação com o perfil dos alunos - 7. º ano - 3.º ciclo do ensino básico – Matemática. Lisboa: Direção-Geral da Educação.. Available at http://www.dge.mec.pt/sites/default/files/Curriculo/Aprendizagens_Essenciais/3_ciclo/ae_mat_7.o_ano.pdf.
  8. Direção-Geral da Educação [DGE] (2021): Aprendizagens essenciais: Articulação com o perfil dos alunos - 7.º ano - 3.º ciclo do ensino básico – Matemática. Lisboa: Direção-Geral da Educação.. Available at https://www.dge.mec.pt/sites/default/files/Curriculo/Aprendizagens_Essenciais/3_ciclo/ae_mat_7.o_ano.pdf.
  9. Ludovic Font (2021): Génération automatique de preuves pour un logiciel tuteur en géométrie. phdthesis. Polytechnique Montréal. Available at https://publications.polymtl.ca/9090/.
  10. Ludovic Font, Philippe R. Richard & Michel Gagnon (2018): Improving QED-Tutrix by Automating the Generation of Proofs. In: Pedro Quaresma & Walther Neuper: Proceedings 6th International Workshop on Theorem proving components for Educational software, Gothenburg, Sweden, 6 Aug 2017, Electronic Proceedings in Theoretical Computer Science 267. Open Publishing Association, pp. 38–58, doi:10.4204/EPTCS.267.3.
  11. M. Gagnon, N. Leduc, P.R. Richard & M. Tessier-Baillargeon (2017): QED-Tutrix: creating and expanding a problem database towards personalized problem itineraries for proof learning in geometry. In: Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education (CERME10)..
  12. René Grothmann (2016): The Geometry Program C.a.R.. International Journal of Computer Discovered Mathematics 1(1), pp. 45–61.
  13. Gila Hanna (2020): Mathematical Proof, Argumentation, and Reasoning, pp. 561–566, doi:10.1007/978-3-030-15789-0_102.
  14. M Hohenwarter (2002): GeoGebra - a software system for dynamic geometry and algebra in the plane. University of Salzburg, Austria.
  15. N Jackiw (2001): The Geometer's Sketchpad v4.0. Key Curriculum Press.
  16. Predrag Janiči\'c (2006): GCLC — A Tool for Constructive Euclidean Geometry and More Than That. In: Andrés Iglesias & Nobuki Takayama: Mathematical Software - ICMS 2006, Lecture Notes in Computer Science 4151. Springer, pp. 58–73, doi:10.1007/11832225_6.
  17. Predrag Janiči\'c, Julien Narboux & Pedro Quaresma (2012): The Area Method: a Recapitulation. Journal of Automated Reasoning 48(4), pp. 489–532, doi:10.1007/s10817-010-9209-7.
  18. Zoltan Kovács, Tomas Recio & Maria Pilar. Vélez (2018): Using Automated Reasoning Tools in GeoGebra in the Teaching and Learning of Proving in Geometry. International Journal for Technology in Mathematics Education 25(2), pp. 33–50, doi:10.1564/tme_v25.2.03.
  19. Zoltan Kovács, Tomas Recio & Maria Pilar Vélez (2022): Mathematics Education in the Age of Artificial Intelligence, chapter Automated Reasoning Tools with GeoGebra: What are they? What are they good for?. Springer Nature, doi:10.1007/978-3-030-86909-0_2.
  20. J. M. Laborde & R. Strässer (1990): Cabri-Géomètre: A microworld of geometry guided discovery learning. International reviews on mathematical education- Zentralblatt fuer didaktik der mathematik 90(5), pp. 171–177.
  21. Ramón Marrades & Ángel Gutiérrez (2000): Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics 44(1/2), pp. 87–125, doi:10.1023/A:1012785106627.
  22. Pedro Quaresma (2022): Evolution of Automated Deduction and Dynamic Constructions in Geometry, chapter 1, pp. 3–22, Mathematics Education in the Digital Era 17. Springer, doi:10.1007/978-3-030-86909-0.
  23. Pedro Quaresma & Vanda Santos (2022): Four Geometry Problems to Introduce Automated Deduction in Secondary Schools. In: Proceedings 10th International Workshop on Theorem Proving Components for Educational Software, Electronic Proceedings in Theoretical Computer Science 354. Open Publishing Association, pp. 27–42, doi:10.4204/eptcs.354.3.
  24. Jürgen Richter-Gebert & Ulrich Kortenkamp (1999): The Interactive Geometry Software Cinderella. Springer.
  25. Vanda Santos & Pedro Quaresma (2021): Exploring Geometric Conjectures with the help of a Learning Environment - A Case Study with Pre-Service Teachers.. The Electronic Journal of Mathematics and Technology 2(1).
  26. Zheng Ye, Shang-Ching Chou & Xiao-Shan Gao (2011): An Introduction to Java Geometry Expert. In: Thomas Sturm & Christoph Zengler: Automated Deduction in Geometry, Lecture Notes in Computer Science 6301. Springer Berlin Heidelberg, pp. 189–195, doi:10.1007/978-3-642-21046-4_10.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org