References

  1. Miguel Abánades, Francisco Botana, Zoltan Kovács & Csilla Sólyom-Gecse (2016): Development of automatic reasoning tools in GeoGebra. ACM Communications in Computer Algebra 50(3), pp. 85–88, doi:10.1145/3015306.3015309.
  2. John Abbott & Anna M. Bigatti (2010): CoCoALib: A C++ Library for Computations in Commutative Algebra... and Beyond. In: Hoeven K., Joswig J.v.d. & Takayama and M.: Mathematical Software ICMS 2010 6327. Springer, Berlin, Heidelberg, pp. 73–76, doi:10.1007/978-3-642-15582-6_15.
  3. Michèle Artigue (2002): Learning Mathematics in a CAS Environment: The Genesis of a Reflection about Instrumentation and the Dialectics between Technical and Conceptual Work. International Journal of Computers for Mathematical Learning 7, pp. 245–274, doi:10.1023/A:1022103903080.
  4. Michèle Artigue & Luc Trouche (2021): Revisiting the French Didactic Tradition through Technological Lenses. Mathematics 9(6), pp. 629, doi:10.3390/math9060629.
  5. Anna Barbosa, Isabel Vale, Simona Jablonski & Matthias Ludwig (2022): Walking through Algebraic Thinking with Theme-Based (Mobile) Math Trails. Education Sciences 12(5), pp. 346, doi:10.3390/educsci12050346.
  6. Simon Barlovits, Morritz Baumann-Wehner & Matthias Ludwig (2020): Curricular learning with MathCityMap: Creating theme-based math trails. In: Mathematics Education in the Digital Age (MEDA) — Proceedings. Linz, Austria, Johannes Kepler University, pp. 143–150.
  7. M. Berger (2009): Geometry. 2e, Springer.
  8. Jiri Blazek & Pavel Pech (2017): Searching for loci using GeoGebra. International Journal for Technology in Mathematics Education 27, pp. 143–147, doi:10.1564/tme_v24.3.06.
  9. Francisco Botana (2003): Automatic Determination of Algebraic Surfaces as Loci of Points. Springer Berlin Heidelberg, doi:10.1007/3-540-44860-8_91.
  10. Francisco Botana & Miguel Abánades (2014): Automatic Deduction in (Dynamic) Geometry: Loci Computation. Computational Geometry 47(1), pp. 75–89, doi:10.1016/j.comgeo.2013.07.001.
  11. Francisco Botana & Miguel A. Abánades (2012): Automatic Deduction in Dynamic Geometry using Sage. In: ThEdu'11, EPTCS 79. Open Publishing Association, pp. 49–62, doi:10.4204/EPTCS.79.3.
  12. Francisco Botana, Zoltan Kovács & Tomás Recio (2018): Towards an automated geometer. Lecture Notes in Computer Science 11110, pp. 215–220, doi:10.13140/RG.2.2.36788.71042.
  13. Francisco Botana & Tomás Recio (2017): Computing envelopes in dynamic geometry environments. AMAI (Annals of Mathematics and Artificial Intelligence) 80(1), pp. 3–20, doi:10.1007/s10472-016-9500-3.
  14. Francisco Botana & Tomás Recio (2019): A Proposal for the Automatic Computation of Envelopes of Families of Plane Curves. Journal of Systems Science and Complexity 32(1), pp. 150–157, doi:10.1007/s11424-019-8341-7.
  15. Francisco Botana & José L. Valcarce (2004): Automatic determination of envelopes and other derived curves within a graphic environment. Mathematics and Computers in Simulation 67(1-2), pp. 3–13, doi:10.1016/j.matcom.2004.05.004.
  16. Guy Brousseau (1997): The theory of didactical situations in mathematics. Kluwer, Dordrecht.
  17. Guy Brousseau & Virginia Warfield (2014): Didactic Situations in Mathematics Education. In: S Lerman: Encyclopedia of Mathematics Education. Springer Netherlands, Dordrecht, pp. 163–170, doi:10.1007/978-94-007-4978-8_47.
  18. James W. Bruce & Peter J. Giblin (2012): Curves and Singularities. Cambridge University Press, doi:10.1017/CBO9781139172615.
  19. Bruno Buchberger (1985): Gröbner bases: an algorithmic method in polynomial ideal theory. In: N. K. Bose: Multidimensional Systems Theory. Springer Netherlands, Dordrecht, Netherlands, pp. 184–232, doi:10.1007/978-94-009-5225-6_6.
  20. S. Chiruguru (2020): The Essential Skills of 21st Century Classroom (4Cs), doi:10.13140/RG.2.2.36190.59201.
  21. Shang Ching Chou (1988): Mechanical Geometry Theorem Proving. D. Reidel Publishing Company, Dordrecht, Netherlands ( 1988.
  22. Waldemar Cie\'slak, Andrzej Miernowski & Witold Mozgawa (1991): Isoptics of a closed strictly convex curve, global differential geometry and global analysis. Lecture Notes in Mathematics 1481, pp. 28–35, doi:10.1007/BFb0083625.
  23. David A. Cox, John Little & Donal O'Shea (1992): Ideals, Varieties, and Algorithms. Springer New York, Springer Verlag, New York, doi:10.1007/978-1-4757-2181-2.
  24. Thierry Dana-Picard (2005): Parametric integrals and symmetries of functions. Mathematics and Computer Education 39(1), pp. 5–12.
  25. Thierry Dana-Picard (2005): Technology as a bypass for a lack of theoretical knowledge. International Journal of Technology in Mathematics Education 11(3), pp. 101–109.
  26. Thierry Dana-Picard (2006): Some Reflections on CAS-assisted Proofs of Theorems. International Journal for Technology in Mathematics Education 12(4), pp. 165–171.
  27. Thierry Dana-Picard (2020): Safety zone in an entertainment park: Envelopes, offsets and a new construction of a Maltese Cross. In: Electronic Proceedings: Mathematics and Technology. of the Asian Conference on Technology in Mathematics ACTM 2020;, ISSN (online version, pp. 1940–4204.
  28. Thierry Dana-Picard (2021): Envelopes and Offsets of Two Algebraic Plane Curves: Exploration of Their Similarities and Differences. Mathematics in Computer Science 15(4), pp. 757–774, doi:10.1007/s11786-021-00504-5.
  29. Thierry Dana-Picard & Sara Hershkovitz (2020): STEAM Education: Technological Skills, Students' Cultural Background and Covid-19 Crisis. Open Education Studies 2(1), pp. 171–179, doi:10.1515/edu-2020-0121.
  30. Thierry Dana-Picard & Sara Hershkovitz (2023): From Space to Maths And to Arts: Virtual Art in Space with Planetary Orbits. Technical Report. Preprint, 2023.
  31. Thierry Dana-Picard & Zoltán Kovács (2018): Automated determination of isoptics with dynamic geometry. In: W. Farmer Rabe, G. Passmore & A. Youssef: Lecture Notes in Computer Science. Springer International Publishing, Springer, pp. 60–75, doi:10.1007/978-3-319-96812-4_6.
  32. Thierry Dana-Picard & Zoltan Kovács (2021): Networking of technologies: a dialog between CAS and DGS. The electronic Journal of Mathematics and Technology 15(1), pp. 43–59.
  33. Thierry Dana-Picard & Zoltan Kovács (2022): Offsets of Cassini ovals. The Electronic Journal of Mathematics and Technology 16(1), pp. 25–39.
  34. Thierry Dana-Picard & Zoltán Kovács (2023): Experimental study of isoptics of a plane curve using dynamical coloring. Mathematics in Computer Science 17(1), doi:10.1007/s11786-022-00555-2. 261-280.
  35. Thierry Dana-Picard, Giora Mann & Nurit Zehavi (2011): From conic intersections to toric intersections: the case of the isoptic curves of an ellipse. The Montana Mathematical Enthusiast 9(1), pp. 59–76.
  36. Thierry Dana-Picard & Witold Mozgawa (2020): Automated exploration of inner isoptics of an ellipse. Journal of Geometry 111(2), pp. 34, doi:10.1007/s00022-020-00546-3.
  37. Thierry Dana-Picard, Aharon Naiman, Witold Mozgawa & Waldemar Cie\'slak (2019): Exploring the Isoptics of Fermat Curves in the Affine Plane Using DGS and CAS. Mathematics in Computer Science 14(1), pp. 45–67, doi:10.1007/s11786-019-00419-2.
  38. Thierry Dana-Picard & Malka Schaps (1993): A computer assisted project: Classification of Algebras. Computational algebraic geometry and commutative algebra (Cortona 1991). Cambridge University Press, Cambridge. 71–83.
  39. Thierry Dana-Picard & Malka Schaps (1996): Classifying Generic Algebras: the Local Case. Houston Journal of Mathematics 22(4), pp. 749–773.
  40. Thierry Dana-Picard & Nurit Zehavi (2016): Revival of a classical topic in differential geometry: the exploration of envelopes in a computerized environment. International Journal of Mathematical Education in Science and Technology 47(6), pp. 938–959, doi:10.1080/0020739X.2015.1133852.
  41. Thierry Dana-Picard, Nurit Zehavi & Giora Mann (2014): Bisoptic curves of hyperbolas. International Journal of Mathematical Education in Science and Technology 45(5), pp. 762–781, doi:10.1080/0020739X.2013.877608.
  42. Thierry Dana-Picard & David Zeitoun (2016): Exploration of parametric integrals related to a question of soil mechanics. International Journal of Mathematical Education in Science and Technology 48(4), pp. 617–630, doi:10.1080/0020739X.2016.1256445.
  43. Thierry Dana-Picard & David G. Zeitoun (2012): Parametric improper integrals, Wallis formula and Catalan numbers. International Journal of Mathematical Education in Science and Technology 43(4), pp. 515–520, doi:10.1080/0020739X.2011.599877.
  44. Thierry Dana-Picard & David G. Zeitoun (2017): A Framework for an ICT-Based Study of Parametric Integrals. Mathematics in Computer Science 11(3-4), pp. 285–296, doi:10.1007/s11786-017-0299-z.
  45. Régis Debray (2001): D.ieu, un itinéraire. Editions Odile Jacob, Paris.
  46. Paul Drijvers (1995): White-box/black-box revisited. The International Derive Journal 2(1), pp. 3–14.
  47. Paul Drijvers (2000): Students encountering obstacles using a CAS. International Journal of Computers for Mathematical Learning 5(3), pp. 189–209, doi:10.1023/A:1009825629417.
  48. Raymond Duval (2017): Understanding the Mathematical Way of Thinking — The Registers of Semiotic Representations. Springer International Publishing, doi:10.1007/978-3-319-56910-9.
  49. Herbert Gelernter (1963): Realization of a geometry-theorem proving machine. In: J. Feldman Feigenbaum: Computers and thought. McGraw-Hill, New York, pp. 134–152.
  50. Anders Kock (2007): Envelopes - notion and definiteness. Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry) 48, pp. 345–350.
  51. Zoltan Kovács, Thierry Dana-Picard & Tomás Recio (2022): Inner isoptics of a parabola. In: Conference: 5th Croatian Conference on Geometry and Graphics, Dubrovnik, pp. 4–8.
  52. Zoltan Kovács & Bernard Parisse (2015): Giac and GeoGebra — improved Gröbner basis computations. In: Lecture Notes in Computer Science. Springer, pp. 126–138. Computer Algebra and Polynomials.
  53. Zoltan Kovács & Tomás Recio (2020): Automatically Augmented Reality for Outdoor Mathematics. in Research on Outdoor STEM Education in the digiTal Age, WTM Verlag für wissenschaftliche Texte und Medien, Münster, 2020, doi:10.37626/GA9783959871440.0.
  54. Zoltán Kovács, Tomás Recio, Philippe R. Richard, Steven Van Vaerenbergh & M. Pilar Vélez (2020): Towards an ecosystem for computer-supported geometric reasoning. International Journal of Mathematical Education in Science and Technology 53(7), pp. 1701–1710, doi:10.1080/0020739X.2020.1837400.
  55. Maria Alessandra Mariotti (2001): Justifying and Proving in the Cabri Environment. International Journal of Computers for Mathematical Learning 6(3), pp. 257–281, doi:10.1023/A:1013357611987.
  56. Anfrzej Miernowski & Witold Mozgawa (1997): On some geometric condition for convexity of isoptics. Rendiconti del Seminario Matematico Universit`a e Politecnico di Torino 55.
  57. Antonio Montes (2018): I-Regular Functions on a Locally Closed Set. In: The Gröbner Cover 27. Springer International Publishing, pp. 67–77, doi:10.1007/978-3-030-03904-2_4. Algorithms and Computations in Mathematics.
  58. Richard Noss & Celia Hoyles (1996): Windows on Mathematical Meanings. Springer Netherlands, doi:10.1007/978-94-009-1696-8.
  59. Pavel Pech (2007): Selected Topics in Geometry with Classical vs. Computer Proving. World Scientific Publishers, doi:10.1142/6556.
  60. Helmut Pottmann & Martin Peternell (2000): Envelopes-computational theory and applications. In: Spring Conference on Computer Graphics. Comenius University, Bratislava, pp. 3–23.
  61. Pedro Quaresma (2020): Automated Deduction and Knowledge Management in Geometry. Mathematics in Computer Science 14(4), pp. 673–692, doi:10.1007/s11786-020-00489-7.
  62. Tomás Recio, Rafael Losada, Zoltan Kovács & Carlos Ueno (2021): Discovering Geometric Inequalities: The Concourse of GeoGebra Discovery, Dynamic Coloring and Maple Tools. Mathematics 9(20), pp. 2548, doi:10.3390/math9202548.
  63. Tomás Recio, Piedad Tolmos Rodríguez-Pinero, Ana Cid-Cid & Rocio Guede-Cid (edts) (2021): STEAM Teacher Education: Problems and Proposals. Mathematics (Special Issue). Available at https://www.mdpi.com/journal/mathematics/special_issues/STEAM_Teacher_Education.
  64. E. Roanes-Lozano, E. Roanes-Macías & M. Villar-Mena (2003): A bridge between dynamic geometry and computer algebra. Mathematical and Computer Modelling 37(9-10), pp. 1005–1028, doi:10.1016/S0895-7177(03)00115-8.
  65. Eugenio Roanes-Lozano (2002): Boosting the Geometrical Possibilities of Dynamic Geometry Systems and Computer Algebra Systems through Cooperation. In: H. Kautschitsch Borovcnik: Technology in Mathematics Teaching. Proceedings of ICTMT-5, Schrifrenreihe Didaktik der Mathematik 25. öbv & hpt, Vienna (2002, pp. 335–348.
  66. Vladimir Rovenski (2000): Geometry of Curves and Surfaces with MAPLE. Birkhäuser 2000.
  67. Tino Schultz & Bert Jüttler (2011): Envelope computation in the plane by approximate implicitization. Applicable Algebra in Engineering, Communication and Computing 22(4), pp. 265–288, doi:10.1007/s00200-011-0149-1.
  68. Juan Refael Sendra, Franz Winkler & Sonia Perez-Diaz (2008): Rational Algebraic Curves. Springer Berlin Heidelberg, doi:10.1007/978-3-540-73725-4.
  69. Joseph Steiner & Thierry Dana-Picard (2004): Classroom note: Teaching mathematical integration: human computational skills versus computer algebra. International Journal of Mathematical Education in Science and Technology 35(2), pp. 249–258, doi:10.1080/00207390310001615570.
  70. Dominik Szał (2005): kowski (2005):Isoptics of open rosettes. Annales Universitatis Mariae Curie-Skłodowska Vol. LIX Section A, pp. 119–128.
  71. René Thom (1962): Sur la théorie des enveloppes. Journal de Mathématiques Pures et Appliquées XLI(2), pp. 1962.
  72. Luc Trouche (2005): Instrumental Genesis, Individual and Social Aspects. In: Ruthven D. & Trouche and K.: Mathematics Education Library. Springer-Verlag, pp. 197–230, doi:10.1007/0-387-23435-7_9.
  73. Lev Vygotsky (1978): Mind in society: The development of higher psychological processes. Harvard University Press, Cambridge, MA.
  74. R. A. Walker (2010): Sociocultural Issues in Motivation. In: International Encyclopedia of Education. Elsevier, pp. 712–717, doi:10.1016/b978-0-08-044894-7.00629-1.
  75. Wu Wen-Tsun (1986): Basic principles of mechanical theorem proving in geometries. Journal of Automated Reasoning 2(3), pp. 221–252, doi:10.1007/BF02328447.
  76. Wen tsün Wu (1994): Mechanical Theorem Proving in Geometries. Springer Vienna, doi:10.1007/978-3-7091-6639-0.
  77. Wen-Tsü Wu (1984): Some Recent Advances in Mechanical Theorem-Proving of Geometries, doi:10.1090/conm/029/13. Contemporary Mathematics 29.
  78. D. Zeitoun & Th. Dana-Picard (2010): Accurate visualization of graphs of functions of two real variables. International Journal of Computational and Mathematical Sciences 4(1), pp. 1–11. Available at http://www.waset.org/journals/ijcms/v4/v4-1-1.pdf.
  79. David Zeitoun & Thierry Dana-Picard (2017): Zooming algorithms for accurate plotting of functions of two real variables. Proceedings in Mathematics & Statistics (PROMS) 198). Springer. 499–515.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org