1. Vincent Aleven, Octav Popescu & Kenneth R Koedinger (2001): Towards tutorial dialog to support self-explanation: Adding natural language understanding to a cognitive tutor. In: Proceedings of Artificial Intelligence in Education, pp. 246–255.
  2. Francisco Botana, Markus Hohenwarter, Predrag Janiči\'c, Zoltán Kovács, Ivan Petrovi\'c, Tomás Recio & Simon Weitzhofer (2015): Automated Theorem Proving in GeoGebra: Current Achievements. Journal of Automated Reasoning 55(1), pp. 39–59, doi:10.1007/s10817-015-9326-4.
  3. Shang-Ching Chou & Xiao-Shan Gao (2001): Automated Reasoning in Geometry. In: John Alan Robinson & Andrei Voronkov: Handbook of Automated Reasoning. Elsevier Science Publishers B.V., pp. 707–749, doi:10.1016/B978-044450813-3/50013-8.
  4. Shang-Ching Chou, Xiao-Shan Gao & Ji Zhang (1996): Automated Generation of Readable Proofs with Geometric Invariants, II. Theorem Proving With Full-Angles. Journal of Automated Reasoning 17, pp. 349–370, doi:10.1007/BF00283134.
  5. Shang-Ching Chou, Xiao-Shan Gao & Jing-Zhong Zhang (2000): A Deductive Database Approach to Automated Geometry Theorem Proving and Discovering. Journal of Automated Reasoning 25(3), pp. 219–246, doi:10.1023/A:1006171315513.
  6. Pedro Cobo, Josep Fortuny, Eloi Puertas & Philippe Richard (2007): AgentGeom: a multiagent system for pedagogical support in geometric proof problems. International Journal of Computers for Mathematical Learning 12, pp. 57–79, doi:10.1007/s10758-007-9111-5.
  7. Ludovic Font, Philippe R. Richard & Michel Gagnon (2018): Improving QED-Tutrix by Automating the Generation of Proofs. In: Pedro Quaresma & Walther Neuper: Proceedings 6th International Workshop on Theorem proving components for Educational software, Gothenburg, Sweden, 6 Aug 2017, Electronic Proceedings in Theoretical Computer Science 267. Open Publishing Association, pp. 38–58, doi:10.4204/EPTCS.267.3.
  8. Herve Gallaire, Jack Minker & Jean-Marie Nicolas (1984): Logic and Databases: A Deductive Approach. ACM Computing Surveys 16(2), pp. 153–185, doi:10.1145/356924.356929.
  9. Gila Hanna, David Reid & Michael de Villiers (2019): Proof Technology in Mathematics Research and Teaching. Springer, doi:10.1007/978-3-030-28483-1.
  10. Predrag Janiči\'c (2010): Geometry Constructions Language. J. Autom. Reasoning 44(1-2), pp. 3–24. Available at
  11. Predrag Janiči\'c (2006): GCLC – A Tool for Constructive Euclidean Geometry and More Than That. In: Andrés Iglesias & Nobuki Takayama: Mathematical Software - ICMS 2006, Lecture Notes in Computer Science 4151. Springer, pp. 58–73, doi:10.1007/11832225_6.
  12. Zoltán Kovács (2015): The Relation Tool in GeoGebra 5. In: Francisco Botana & Pedro Quaresma: Automated Deduction in Geometry, Lecture Notes in Computer Science 9201. Springer International Publishing, pp. 53–71, doi:10.1007/978-3-319-21362-0_4.
  13. Zoltán Kovács & Jonathan H. Yu (2020): Towards Automated Discovery of Geometrical Theorems in GeoGebra. CoRR abs/2007.12447. Available at
  14. Nicolas Leduc (2016): QED-Tutrix : système tutoriel intelligent pour l'accompagnement d'élèves en situation de résolution de problèmes de démonstration en géométrie plane. École polytechnique de Montréal..
  15. Vanda Luengo (2005): Some didactical and epistemological considerations in the design of educational software: the Cabri-Euclide example. International Journal of Computers for Mathematical Learning 10(1), pp. 1–29, doi:10.1007/s10758-005-4580-x.
  16. Constantino Martins, Paulo Couto, Marta Fernandes, Cristina Bastos, Cristina Lobo, Luiz Faria & Eurico Carrapatoso (2011): PCMAT–Mathematics Collaborative Learning Platform. In: Highlights in practical applications of agents and multiagent systems. Springer, pp. 93–100, doi:10.1007/978-3-642-19917-2_12.
  17. Noboru Matsuda & Kurt VanLehn (2005): Advanced Geometry Tutor: An intelligent tutor that teaches proof-writing with construction. In: Chee-Kit Looi, Gordon I. McCalla, Bert Bredeweg & Joost Breuker: Artificial Intelligence in Education - Supporting Learning through Intelligent and Socially Informed Technology, Proceedings of the 12th International Conference on Artificial Intelligence in Education, AIED 2005, July 18-22, 2005, Amsterdam, The Netherlands, Frontiers in Artificial Intelligence and Applications 125. IOS Press, pp. 443–450. Available at
  18. Zoltán Kovács & Predrag Janiči\'c Mladen Nikoli\'c, Vesna Marinkovi\'c (2019): Portfolio theorem proving and prover runtime prediction for geometry. Annals of Mathematics and Artificial Intelligence 85(2-4), pp. 119–146, doi:10.1007/s10472-018-9598-6.
  19. Balacheff N. (2003): Ck\z@ \z@ c\tw@ \z@ /4\z@ \dimen@ \tw@ \dimen@ -\tw@ \dimen@ -\z@ \dimen@ \z@ \dimen@ \tw@ \dimen@ -0\tw@ \dimen@ -0\tw@ \dimen@ii 0\z@ -\dimen@ to4\dimen@ii \tw@ -\dimen@ii to\z@ to4\z@ , a knowledge model drawn from an understanding of students understanding. Didactical principles and model specifications. In: Soury-Lavergne S. (ed.) Baghera assessment project, designing an hybrid and emergent educational society. Technical Report 81, 3–22. Cahier Leibniz.
  20. Art Quaife (1989): Automated development of Tarski's geometry. Journal of Automated Reasoning 5, pp. 97–118, doi:10.1007/BF00245024.
  21. Pedro Quaresma (2017): Towards an Intelligent and Dynamic Geometry Book. Mathematics in Computer Science 11(3), pp. 427–437, doi:10.1007/s11786-017-0302-8.
  22. Philippe R Richard & Josep M Fortuny (2007): Amélioration des compétences argumentatives à l'aide d'un système tutoriel en classe de mathématique au secondaire. In: Annales de didactique et de sciences cognitives 12, pp. 83–216.
  23. Philippe R Richard, Josep M Fortuny, Markus Hohenwarter & Michel Gagnon (2007): geogebraTUTOR: une nouvelle approche pour la recherche sur l'apprentissage compétentiel et instrumenté de la géométrie à l'école secondaire. In: E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education. Association for the Advancement of Computing in Education (AACE), pp. 428–435.
  24. Vanda Santos & Pedro Quaresma (forthcoming): Exploring Geometric Conjectures with the help of a Learning Environment - A Case Study with Pre-Service Teachers.. The Electronic Journal of Mathematics and Technology 2(1).
  25. G. Sutcliffe (2017): The TPTP Problem Library and Associated Infrastructure. From CNF to TH0, TPTP v6.4.0. Journal of Automated Reasoning 59(4), pp. 483–502, doi:10.1007/s10817-017-9407-7.
  26. Ke Wang & Zhendong Su (2015): Automated Geometry Theorem Proving for Human-readable Proofs. In: Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI'15. AAAI Press, pp. 1193–1199. Available at
  27. Zheng Ye, Shang-Ching Chou & Xiao-Shan Gao (2011): An Introduction to Java Geometry Expert. In: Thomas Sturm & Christoph Zengler: Automated Deduction in Geometry, Lecture Notes in Computer Science 6301. Springer Berlin Heidelberg, pp. 189–195, doi:10.1007/978-3-642-21046-4_10.

Comments and questions to:
For website issues: