1. O. Bottema, R.Z. Djordjevic, R.R. Janic, D.S. Mitrinovic & P.M. Vasic (1969): Geometric Inequalities. Wolters-Noordhoff Publishing, Groningen.
  2. C. W. Brown (2003): An Overview of QEPCAD B: a Tool for Real Quantifier Elimination and Formula Simplification. Journal of Japan Society for Symbolic and Algebraic Computation 10(1), pp. 13–22.
  3. William Chapple (1746): An essay on the properties of triangles inscribed in and circumscribed about two given circles. Miscellanea Curiosa Mathematica 4, pp. 117–124.
  4. S. C. Chou (1988): Mechanical Geometry Theorem Proving. D. Reidel Publishing Company, Dordrecht, Netherlands.
  5. Thierry Dana-Picard & Zoltán Kovács (2018): Automated determination of isoptics with dynamic geometry. In: F. Rabe, W. Farmer, G. Passmore & A. Youssef: Intelligent Computer Mathematics, Lecture Notes in Artificial Intelligence 11006. Springer International Publishing, pp. 1–16, doi:10.1007/978-3-319-96812-4_6.
  6. J. H. Davenport (2017): What Does ``Without Loss of Generality'' Mean, and How Do We Detect It. Mathematics in Computer Science 11, pp. 297–303, doi:10.1007/s11786-017-0316-2.
  7. Philip J. Davis (1995): The Rise, Fall, and Possible Transfiguration of Triangle Geometry: A Mini-History. The American Mathematical Monthly 102(3), pp. 204–211, doi:10.1080/00029890.1995.11990561.
  8. Adam Adamandy Kochański (1685): Observationes Cyclometricae adfacilitandam Praxin accomodatae. Acta Eruditorum 4, pp. 394–398.
  9. Zoltán Kovács (2015): The Relation Tool in GeoGebra 5. In: Francisco Botana & Pedro Quaresma: Automated Deduction in Geometry: 10th International Workshop, ADG 2014, Coimbra, Portugal, July 9-11, 2014, Revised Selected Papers. Springer International Publishing, Cham, pp. 53–71, doi:10.1007/978-3-319-21362-0_4.
  10. Zoltán Kovács (2020): Automated Detection of Interesting Properties in Regular Polygons. Mathematics in Computer Science 14, pp. 727–755, doi:10.1007/s11786-020-00491-z.
  11. Zoltán Kovács (2020): GeoGebra Discovery. A GitHub project.
  12. Zoltán Kovács & Bernard Parisse (2015): Giac and GeoGebra – Improved Gröbner Basis Computations. In: Jaime Gutierrez, Josef Schicho & Martin Weimann: Computer Algebra and Polynomials, Lecture Notes in Computer Science. Springer, pp. 126–138, doi:10.1007/978-3-319-15081-9_7.
  13. R. Losada, T. Recio & J. L. Valcarce (2011): Equal Bisectors at a Vertex of a Triangle. In: Beniamino Murgante, Osvaldo Gervasi, Andrés Iglesias, David Taniar & Bernady O. Apduhan: Computational Science and Its Applications - ICCSA 2011. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 328–341, doi:10.1007/978-3-642-21898-9_29.
  14. L. J. Mordell & D. F. Barrow (1937): Solution to 3740. American Mathematical Monthly 44, pp. 252–254, doi:10.2307/2300713.
  15. J.L. Rabinowitsch (1929): Zum Hilbertschen Nullstellensatz. Mathematische Annalen 102(1), pp. 520, doi:10.1007/BF01782361.
  16. Tomás Recio & M. Pilar Vélez (1999): Automatic discovery of theorems in elementary geometry. Journal of Automated Reasoning 23, pp. 63–82, doi:10.1023/A:1006135322108.
  17. Thomas Sturm & Volker Weispfenning (1996): Computational geometry problems in REDLOG. In: International Workshop on Automated Deduction in Geometry. LNCS, vol. 1360. Springer, Berlin, Heidelberg, doi:10.1007/BFb0022720.
  18. Róbert Vajda & Zoltán Kovács (2018): realgeom, a tool to solve problems in real geometry. A GitHub project.
  19. Róbert Vajda & Zoltán Kovács (2020): GeoGebra and theıtshape realgeom Reasoning Tool. In: Pascal Fontaine, Konstantin Korovin, Ilias S. Kotsireas, Philipp Rümmer & Sophie Tourret: PAAR+SC-Square 2020. Workshop on Practical Aspects of Automated Reasoning and Satisfiability Checking and Symbolic Computation Workshop 2020, pp. 204–219.
  20. F. Vale-Enriquez & C.W. Brown (2018): Polynomial Constraints and Unsat Cores in Tarski. In: Mathematical Software – ICMS 2018. LNCS, vol. 10931. Springer, Cham, pp. 466–474, doi:10.1007/978-3-319-96418-8_55.
  21. Wolfram Research, Inc. (2020): Mathematica, Version 12.1. Champaign, IL.
  22. W. T. Wu (1978): On the decision problem and the mechanization of theorem proving in elementary geometry. Scientia Sinica 21, pp. 157–179.

Comments and questions to:
For website issues: