References

  1. Francisco Botana, Zoltán Kovács & Tomás Recio (2018): Automated Geometer, a web-based discovery tool. Presentation at ADG-12, Nanning, China, doi:10.13140/RG.2.2.19792.76807.
  2. Francisco Botana, Zoltán Kovács & Tomás Recio (2018): Towards an Automated Geometer. Presentation at AISC-13, Suzhou, China, doi:10.13140/RG.2.2.36788.71042.
  3. Francisco Botana, Zoltán Kovács & Tomás Recio (2018): Towards an Automated Geometer. In: Jacques Fleuriot, Dongming Wang & Jacques Calmet: Artificial Intelligence and Symbolic Computation, Lecture Notes in Artificial Intelligence 11110. Springer International Publishing, pp. 215–220, doi:10.1007/978-3-319-99956-2-15.
  4. Xiaoyu Chen, Dan Song & Dongming Wang (2014): Automated generation of geometric theorems from images of diagrams. Annals of Mathematics and Artificial Intelligence 74(3-4), pp. 1–26, doi:10.1007/s10472-014-9433-7.
  5. Shang-Ching Chou (1987): Mechanical Geometry Theorem Proving. Springer Science + Business Media, doi:10.1007/978-94-009-4037-6.
  6. Hongguang Fu, Jingzhong Zhang, Xiuqin Zhong, Mingkai Zha & Li Liu (2019): Robot for Mathematics College Entrance Examination. In: Electronic Proceedings of the 24th Asian Technology Conference in Mathematics. Mathematics and Technology, LLC.
  7. Akira Fujita, Akihiro Kameda, Ai Kawazoe & Yusuke Miyao (2014): Overview of Todai robot project and evaluation framework of its NLP-based problem solving. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14), pp. 2590–2597.
  8. Hongbiao Gao, Jianbin Li & Jingde Cheng (2019): Measuring Interestingness of Theorems in Automated Theorem Finding by Forward Reasoning Based on Strong Relevant Logic. In: 2019 IEEE International Conference on Energy Internet (ICEI), pp. 356–361, doi:10.1109/ICEI.2019.00069.
  9. Ulrich Kortenkamp (1999): Foundations of Dynamic Geometry. ETH Zürich, doi:10.3929/ETHZ-A-003876663.
  10. Zoltán Kovács (2019): Towards a new GeoGebra Geometry App. Presentation at MatemaTech Seminar for teachers, České Budějovice, Czechia, doi:10.13140/RG.2.2.25544.98568.
  11. Zoltán Kovács, Tomás Recio & M. Pilar Vélez (2019): Detecting truth, just on parts. Revista Matemática Complutense 32, pp. 451–474, doi:10.1007/s13163-018-0286-1.
  12. Zoltán Kovács & Jonathan H. Yu (2020): Towards Automated Discovery of Geometrical Theorems in GeoGebra. CoRR abs/2007.12447. Available at https://arxiv.org/abs/2007.12447.
  13. Zlatan Magajna (2011): An observation tool as an aid for building proofs. The Electronic Journal of Mathematics and Technology 5(3), pp. 251–260.
  14. E.W. Mayr & A.R. Meyer (1982): The Complexity of the Word Problem for Commutative Semigroups and Polynomial Ideals. Advances in Mathematics 46, pp. 305–329, doi:10.1016/0001-8708(82)90048-2.
  15. Y. Puzis, Y. Gao & G. Sutcliffe (2006): Automated generation of interesting theorems. In: G. Sutcliffe & R. Goebel: Proceedings of the 19th International FLAIRS Conference. AAAI Press, Menlo Park, pp. 49–54.
  16. Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren Etzioni & Clint Malcolm (2015): Solving Geometry Problems: Combining Text and Diagram Interpretation. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1466–1476, doi:10.18653/v1/D15-1171.
  17. Larry Wos (1988): Automated Reasoning: 33 Basic Research Problems. Prentice-Hall.
  18. Zheng Ye, Shang-Ching Chou & Xiao-Shan Gao (2011): An Introduction to Java Geometry Expert. In: Automated Deduction in Geometry. Springer Science + Business Media, pp. 189–195, doi:10.1007/978-3-642-21046-4_10.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org