Matteo Acclavio & Roberto Maieli (2020):
Generalized Connectives for Multiplicative Linear Logic.
In: 28th EACSL Annual Conference on Computer Science Logic, CSL 2020, January 13-16, 2020, Barcelona, Spain,
pp. 6:1–6:16,
doi:10.4230/LIPIcs.CSL.2020.6.
Michele Basaldella, Alexis Saurin & Kazushige Terui (2010):
From Focalization of Logic to the Logic of Focalization.
Electr. Notes Theor. Comput. Sci. 265,
pp. 161–176,
doi:10.1016/j.entcs.2010.08.010.
Michele Basaldella & Kazushige Terui (2010):
On the meaning of logical completeness.
Logical Methods in Computer Science 6(4),
doi:10.2168/LMCS-6(4:11)2010.
Pierre-Louis Curien (2005):
Introduction to linear logic and ludics, part II.
CoRR abs/cs/0501039.
ArXiv:cs/0501039.
Michael Dummett (1991):
The Logical Basis of Metaphysics.
Duckworth,
London.
Claudia Faggian (2006):
Interactive observability in Ludics: The geometry of tests.
Theor. Comput. Sci. 350(2-3),
pp. 213–233,
doi:10.1016/j.tcs.2005.10.042.
Christophe Fouqueré & Myriam Quatrini (2018):
Study of Behaviours via Visitable Paths.
Logical Methods in Computer Science 14(2),
doi:10.23638/LMCS-14(2:7)2018.
Nissim Francez & Roy Dyckhoff (2012):
A Note on Harmony.
J. Philosophical Logic 41(3),
pp. 613–628,
doi:10.1007/s10992-011-9208-0.
Jean-Yves Girard (2001):
Locus Solum: From the rules of logic to the logic of rules.
Mathematical Structures in Computer Science 11(3),
pp. 301–506,
doi:10.1017/S096012950100336X.
Giulio Guerrieri & Alberto Naibo (2020):
The problem of harmony in classical logic.
In: Igor Sedlár & Martin Blicha: The Logica Yearbook 2019.
College Publications,
London.
Alberto Naibo & Mattia Petrolo (2015):
Are Uniqueness and Deducibility of Identicals the Same?.
Theoria 81(2),
pp. 143–181,
doi:10.1111/theo.12051.
Alberto Naibo, Mattia Petrolo & Thomas Seiller (2016):
On the Computational Meaning of Axioms.
In: Juan Redmond, Olga Pombo Martins & Ángel Nepomuceno Fernández: Epistemology, Knowledge and the Impact of Interaction.
Springer International Publishing,
pp. 141–184,
doi:10.1007/978-3-319-26506-3_5.
Alice Pavaux (2017):
Inductive and Functional Types in Ludics.
In: 26th EACSL Annual Conference on Computer Science Logic, CSL 2017, August 20-24, 2017, Stockholm, Sweden,
pp. 34:1–34:20,
doi:10.4230/LIPIcs.CSL.2017.34.
Alice Pavaux (2017):
Inductive, Functional and Non-Linear Types in Ludics.
Université Paris 13.
Frank Pfenning & Rowan Davies (2001):
A judgmental reconstruction of modal logic.
Math. Struct. Comput. Sci. 11(4),
pp. 511–540,
doi:10.1017/S0960129501003322.
Jan von Plato (2008):
Gentzen's Proof of Normalization for Natural Deduction.
Bull. Symb. Log. 14(2),
pp. 240–257,
doi:10.2178/bsl/1208442829.
Dag Prawitz (1965):
Natural Deduction: A Proof-Theoretical Study.
Almqvist & Wiksell,
Stockholm.
Peter Schroeder-Heister (2014):
The Calculus of Higher-Level Rules, Propositional Quantification, and the Foundational Approach to Proof-Theoretic Harmony.
Studia Logica 102(6),
pp. 1185–1216,
doi:10.1007/s11225-014-9562-3.