References

  1. Matteo Acclavio & Roberto Maieli (2020): Generalized Connectives for Multiplicative Linear Logic. In: 28th EACSL Annual Conference on Computer Science Logic, CSL 2020, January 13-16, 2020, Barcelona, Spain, pp. 6:1–6:16, doi:10.4230/LIPIcs.CSL.2020.6.
  2. Michele Basaldella, Alexis Saurin & Kazushige Terui (2010): From Focalization of Logic to the Logic of Focalization. Electr. Notes Theor. Comput. Sci. 265, pp. 161–176, doi:10.1016/j.entcs.2010.08.010.
  3. Michele Basaldella & Kazushige Terui (2010): On the meaning of logical completeness. Logical Methods in Computer Science 6(4), doi:10.2168/LMCS-6(4:11)2010.
  4. Pierre-Louis Curien (2005): Introduction to linear logic and ludics, part II. CoRR abs/cs/0501039. ArXiv:cs/0501039.
  5. Michael Dummett (1991): The Logical Basis of Metaphysics. Duckworth, London.
  6. Claudia Faggian (2006): Interactive observability in Ludics: The geometry of tests. Theor. Comput. Sci. 350(2-3), pp. 213–233, doi:10.1016/j.tcs.2005.10.042.
  7. Christophe Fouqueré & Myriam Quatrini (2018): Study of Behaviours via Visitable Paths. Logical Methods in Computer Science 14(2), doi:10.23638/LMCS-14(2:7)2018.
  8. Nissim Francez & Roy Dyckhoff (2012): A Note on Harmony. J. Philosophical Logic 41(3), pp. 613–628, doi:10.1007/s10992-011-9208-0.
  9. Jean-Yves Girard (2001): Locus Solum: From the rules of logic to the logic of rules. Mathematical Structures in Computer Science 11(3), pp. 301–506, doi:10.1017/S096012950100336X.
  10. Giulio Guerrieri & Alberto Naibo (2020): The problem of harmony in classical logic. In: Igor Sedlár & Martin Blicha: The Logica Yearbook 2019. College Publications, London.
  11. Alberto Naibo & Mattia Petrolo (2015): Are Uniqueness and Deducibility of Identicals the Same?. Theoria 81(2), pp. 143–181, doi:10.1111/theo.12051.
  12. Alberto Naibo, Mattia Petrolo & Thomas Seiller (2016): On the Computational Meaning of Axioms. In: Juan Redmond, Olga Pombo Martins & Ángel Nepomuceno Fernández: Epistemology, Knowledge and the Impact of Interaction. Springer International Publishing, pp. 141–184, doi:10.1007/978-3-319-26506-3_5.
  13. Alice Pavaux (2017): Inductive and Functional Types in Ludics. In: 26th EACSL Annual Conference on Computer Science Logic, CSL 2017, August 20-24, 2017, Stockholm, Sweden, pp. 34:1–34:20, doi:10.4230/LIPIcs.CSL.2017.34.
  14. Alice Pavaux (2017): Inductive, Functional and Non-Linear Types in Ludics. Université Paris 13.
  15. Frank Pfenning & Rowan Davies (2001): A judgmental reconstruction of modal logic. Math. Struct. Comput. Sci. 11(4), pp. 511–540, doi:10.1017/S0960129501003322.
  16. Jan von Plato (2008): Gentzen's Proof of Normalization for Natural Deduction. Bull. Symb. Log. 14(2), pp. 240–257, doi:10.2178/bsl/1208442829.
  17. Dag Prawitz (1965): Natural Deduction: A Proof-Theoretical Study. Almqvist & Wiksell, Stockholm.
  18. Peter Schroeder-Heister (2014): The Calculus of Higher-Level Rules, Propositional Quantification, and the Foundational Approach to Proof-Theoretic Harmony. Studia Logica 102(6), pp. 1185–1216, doi:10.1007/s11225-014-9562-3.
  19. Peter Schroeder-Heister (2018): Proof-Theoretic Semantics. In: Edward N. Zalta: The Stanford Encyclopedia of Philosophy, spring 2018 edition. Metaphysics Research Lab, Stanford University. Available at https://plato.stanford.edu/archives/spr2018/entries/proof-theoretic-semantics/.
  20. Manfred E. Szabo (1969): The Collected Papers of Gerhard Gentzen. North-Holland, Amsterdam.
  21. Kazushige Terui (2011): Computational ludics. Theor. Comput. Sci. 412(20), pp. 2048–2071, doi:10.1016/j.tcs.2010.12.026.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org