Guillaume Allais, Robert Atkey, James Chapman, Conor McBride & James McKinna (2021):
A type- and scope-safe universe of syntaxes with binding: their semantics and proofs.
Journal of Functional Programming 31,
pp. e22,
doi:10.1017/S0956796820000076.
Andreas Abel & Jean-Philippe Bernardy (2020):
A Unified View of Modalities in Type Systems.
Proc. ACM Program. Lang. 4(ICFP),
doi:10.1145/3408972.
Guillaume Allais (2018):
Typing with Leftovers - A mechanization of Intuitionistic Multiplicative-Additive Linear Logic.
In: TYPES 2017,
pp. 1:1–1:22,
doi:10.4230/LIPIcs.TYPES.2017.1.
Andrew Barber (1996):
Dual Intuitionistic Linear Logic.
Technical Report.
University of Edinburgh.
P. N. Benton, Gavin M. Bierman, Valeria de Paiva & Martin Hyland (1993):
A Term Calculus for Intuitionistic Linear Logic.
In: Typed Lambda Calculi and Applications,
LNCS 664.
Springer,
pp. 75–90,
doi:10.1007/BFb0037099.
Aloïs Brunel, Marco Gaboardi, Damiano Mazza & Steve Zdancewic (2014):
A Core Quantitative Coeffect Calculus.
In: Zhong Shao: Programming Languages and Systems - 23rd European Symposium on Programming, ESOP 2014, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings,
Lecture Notes in Computer Science 8410.
Springer,
pp. 351–370,
doi:10.1007/978-3-642-54833-8_19.
Nick Benton, Chung-Kil Hur, Andrew Kennedy & Conor McBride (2012):
Strongly typed term representations in Coq.
J. of Autom Reasoning 49(2),
doi:10.1007/s10817-011-9219-0.
Kaustuv Chaudhuri, Leonardo Lima & Giselle Reis (2019):
Formalized meta-theory of sequent calculi for linear logics.
Theor. Comput. Sci. 781,
pp. 24–38,
doi:10.1016/j.tcs.2019.02.023.
Karl Crary (2010):
Higher-Order Representation of Substructural Logics.
SIGPLAN Not. 45(9),
pp. 131142,
doi:10.1145/1932681.1863565.
Dan R. Ghica & Alex I. Smith (2014):
Bounded Linear Types in a Resource Semiring.
In: Zhong Shao: Programming Languages and Systems - 23rd European Symposium on Programming, ESOP 2014, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings,
Lecture Notes in Computer Science 8410.
Springer,
pp. 331–350,
doi:10.1007/978-3-642-54833-8_18.
Daniel R. Licata, Michael Shulman & Mitchell Riley (2017):
A Fibrational Framework for Substructural and Modal Logics.
In: FSCD 2017,
pp. 25:1–25:22,
doi:10.4230/LIPIcs.FSCD.2017.25.
Dominic Orchard, Vilem-Benjamin Liepelt & Harley Eades III (2019):
Quantitative program reasoning with graded modal types.
Proc. ACM Program. Lang. 3(ICFP),
pp. 110:1–110:30,
doi:10.1145/3341714.
Frank Pfenning & Rowan Davies (2001):
A judgmental reconstruction of modal logic 11,
pp. 511–540,
doi:10.1017/S0960129501003322.
Tomas Petricek, Dominic A. Orchard & Alan Mycroft (2014):
Coeffects: a calculus of context-dependent computation.
In: Johan Jeuring & Manuel M. T. Chakravarty: Proceedings of the 19th ACM SIGPLAN international conference on Functional programming, Gothenburg, Sweden, September 1-3, 2014.
ACM,
pp. 123–135,
doi:10.1145/2628136.2628160.
James Power & Caroline Webster (1999):
Working with Linear Logic in Coq.
12th International Conference on Theorem Proving in Higher Order Logics (Work-in-progress paper).
Jason Reed & Benjamin C. Pierce (2010):
Distance makes the types grow stronger: a calculus for differential privacy.
In: Paul Hudak & Stephanie Weirich: Proceeding of the 15th ACM SIGPLAN international conference on Functional programming, ICFP 2010, Baltimore, Maryland, USA, September 27-29, 2010.
ACM,
pp. 157–168,
doi:10.1145/1863543.1863568.
Kornél Szlachányi (2012):
Skew-monoidal categories and bialgebroids.
Advances in Mathematics 231(3-4),
pp. 1694–1730,
doi:10.1016/j.aim.2012.06.027.
Philip Wadler (1992):
There's no substitute for linear logic.
In: 8th International Workshop on the Mathematical Foundations of Programming Semantics.
Bruno Xavier, Carlos Olarte, Giselle Reis & Vivek Nigam (2017):
Mechanizing Focused Linear Logic in Coq.
In: 12th Workshop on Logical and Semantic Frameworks, with Applications,
ENTCS 338.
Elsevier,
pp. 219–236,
doi:10.1016/j.entcs.2018.10.014.