1. José Bacelar Almeida, Jorge Sousa Pinto & Miguel Vilaça (2008): Token-passing nets for functional languages. Electronic Notes in Theoretical Computer Science 204, pp. 181–198, doi:10.1016/j.entcs.2008.03.061.
  2. Andrea Asperti & Stefano Guerrini (1998): The optimal implementation of functional programming languages. Cambridge Tracts in Theoretical Computer Science No. 45. Cambridge University Press.
  3. Maribel Fernández & Lionel Khalil (2003): Interaction Nets with McCarthy's Amb: Properties and Applications. Nordic J. of Computing 10(2), pp. 134–162.
  4. Maribel Fernández & Ian Mackie (1999): A calculus for interaction nets. In: Principles and Practice of Declarative Programming. Springer, pp. 170–187, doi:10.1007/10704567.
  5. Maribel Fernández, Ian Mackie & François-Régis Sinot (2005): Closed reduction: explicit substitutions without α-conversion. Mathematical Structures in Computer Science 15(2), pp. 343–381, doi:10.1017/S0960129504004633.
  6. Yves Lafont (1990): Interaction nets. In: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM, pp. 95–108, doi:10.1145/96709.96718.
  7. John Lamping (1990): An algorithm for optimal lambda calculus reduction. In: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM, pp. 16–30, doi:10.1145/96709.96711.
  8. Julia L Lawall & Harry G Mairson (1996): Optimality and inefficiency: what isn't a cost model of the lambda calculus?. In: Proceedings of the 1996 ACM SIGPLAN International Conference on Functional Programming (ICFP'96), Philadelphia, Pennsylvania, May 24–26, 1996. Pearson Education, pp. 92, doi:10.1145/232627.232639.
  9. Jean-Jacques Lévy (1978): Réductions correctes et optimales dans le lambda-calcul.
  10. Ian Mackie (2005): Encoding strategies in the lambda calculus with interaction nets. In: Implementation and Application of Functional Languages, Lecture Notes in Computer Science 4015. Springer, pp. 19–36, doi:10.1007/11964681.
  11. Anton Salikhmetov (2015): Macro Lambda Calculus. Available at
  12. François-Régis Sinot (2005): Call-by-name and call-by-value as token-passing interaction nets. In: Typed Lambda Calculi and Applications. Springer, pp. 386–400, doi:10.1007/11417170.
  13. François-Régis Sinot (2006): Token-passing nets: Call-by-need for free. Electronic Notes in Theoretical Computer Science 135(3), pp. 129–139, doi:10.1016/j.entcs.2005.09.027.

Comments and questions to:
For website issues: