1. M. Avanzini (2013): Verifying Polytime Computability Automatically. Universität Innsbruck, Austria.
  2. M. Avanzini, U. Dal Lago & G. Moser (2015): Analysing the Complexity of Functional Programs: Higher-Order Meets First-Order. In: Proc. 20th ICFP. ACM, pp. 152–164, doi:10.1145/2784731.2784753.
  3. M. Avanzini & G. Moser (2016): A Combination Framework for Complexity. IC 248, pp. 22–55, doi:10.1016/j.ic.2015.12.007.
  4. M. Avanzini & G. Moser (2016): Complexity of Acyclic Term Graph Rewriting. In: Proc. 1st FSCD, LIPIcs. To appear.
  5. M. Avanzini, G. Moser & M. Schaper (2016): TcT: Tyrolean Complexity Tool. In: Proc. of 22nd TACAS, LNCS, pp. 407–423, doi:10.1007/978-3-662-49674-9_24.
  6. H. P. Barendregt, M. v. Eekelen, J. R. W. Glauert, J. R. Kennaway, M. J. Plasmeijer & M. R. Sleep (1987): Term Graph Rewriting. In: PARLE (2), LNCS 259, pp. 141–158, doi:10.1007/3-540-17945-3_8.
  7. E. Barendsen (2003): Term Graph Rewriting. In: Term Rewriting Systems, chapter 13, CTTCS 55. Cambridge University Press, pp. 712–743.
  8. G. Bonfante & B. Guillaume (2013): Non-simplifying Graph Rewriting Termination. In: Proc. 7th TERMGRAPH, EPTCS, pp. 4–16, doi:10.4204/EPTCS.110.3.
  9. M. Brockschmidt, R. Musiol, C. Otto & J. Giesl (2012): Automated Termination Proofs for Java Programs with Cyclic Data. In: Proc. 24th CAV, LNCS 7358, pp. 105–122, doi:10.1007/978-3-642-31424-7_13.
  10. H. J. S. Bruggink, B. König, D. Nolte & H. Zantema (2015): Proving Termination of Graph Transformation Systems Using Weighted Type Graphs over Semirings. In: Proc. 8th ICGT, LNCS 9151, pp. 52–68, doi:10.1007/978-3-319-21145-9_4.
  11. H. J. S. Bruggink, B. König & H. Zantema (2014): Termination Analysis for Graph Transformation Systems. In: Proc. of 8th IFIP TC 1/WG 2.2, LNCS 8705, pp. 179–194, doi:10.1007/978-3-662-44602-7_15.
  12. N. Dershowitz (1982): Orderings for Term-Rewriting Systems. TCS 17, pp. 279–301, doi:10.1016/0304-3975(82)90026-3.
  13. J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski & R. Thiemann (2014): Proving Termination of Programs Automatically with AProVE. In: Proc. 7th IJCAR, LNCS 8562, pp. 184–191, doi:10.1007/978-3-319-08587-6_13.
  14. J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski & R. Thiemann (2011): Automated Termination Proofs for Haskell by Term Rewriting. TOPLAS 33(2), pp. 7:1–7:39, doi:10.1145/1890028.1890030.
  15. G. Higman (1952): Ordering by Divisibility in Abstract Algebras. Proc. London Mathematical Society 3(2), pp. 326–336, doi:10.1112/plms/s3-2.1.326.
  16. J. B. Kruskal (1960): Well-Quasi-Ordering, The Tree Theorem, and Vazsonyi's Conjecture. Trans. of the AMS 95(2), pp. 210–225, doi:10.2307/1993287.
  17. A. Middeldorp & H. Zantema (1997): Simple Termination of Rewrite Systems. TCS 175, pp. 127–158, doi:10.1016/S0304-3975(96)00172-7.
  18. C. St. J. A. Nash-Williams (1963): On Well-Quasi-Ordering Finite Trees. Proc. Cambridge Philosophical Society 59, pp. 833–835, doi:10.1017/S0305004100003844.
  19. D. Plump (1997): Simplification Orders for Term Graph Rewriting. In: MFCS, pp. 458–467, doi:10.1007/BFb0029989.
  20. D. Plump (1999): Term Graph Rewriting. In: Handbook of Graph Grammars and Computing by Graph Transformation, chapter 1 2. World Scientific, pp. 3–61, doi:10.1142/9789812815149_0001.
  21. T. Ströder, J. Giesl, M. Brockschmidt, F. Frohn, C. Fuhs, J. Hensel & P. Schneider-Kamp (2014): Proving Termination and Memory Safety for Programs with Pointer Arithmetic. In: Proc. 7th IJCAR, LNCS 8562, pp. 208–223, doi:10.1007/978-3-662-46681-0_32.

Comments and questions to:
For website issues: