1. C. Alós-Ferrer & K. Ritzberger (2016): The Theory of Extensive Form Games. Springer, doi:10.1007/978-3-662-49944-3.
  2. P. Battigalli (1997): On rationalizability in extensive games. Journal of Economic Theory 74, pp. 40–61, doi:10.1006/jeth.1996.2252.
  3. E. Boros, K. Elbassioni, V. Gurvich & K. Makino (2012): On Nash equilibria and improvement cycles in pure positional strategies for Chess-like and Backgammon-like n-person games. Discrete Mathematics 312(4), pp. 772–788, doi:10.1016/j.disc.2011.11.011.
  4. T. Brihaye, G. Geeraerts, M. Hallet & S. Le Roux (2017): Dynamics and Coalitions in Sequential Games. In: Proc. 8th International Symposium on Games, Automata, Logics and Formal Verification, pp. 136150, doi:10.4204/EPTCS.256.10.
  5. M. Escardo & P. Oliva (2012): Computing Nash Equilibria of Unbounded Games. In: Turing-100. The Alan Turing Centenary, EPiC Series in Computing 10, pp. 53–65, doi:10.29007/1wpl.
  6. C. Ewerhart (2002): Backward Induction and the Game-Theoretic Analysis of Chess. Games and Economic Behaviour 39, pp. 206–214, doi:10.1006/game.2001.0900.
  7. C. Ewerhart (2002): Iterated Weak Dominance in Strictly Competitive Games of Perfect Information. Journal of Economic Theory 107(2), pp. 474–482, doi:10.1006/jeth.2001.2958.
  8. D. Fudenberg & D. Levine (1983): Subgame-perfect equilibria of finite and infinite-horizon games. Journal of Economic Theory 31(2), pp. 251–268, doi:10.1016/0022-0531(83)90076-5.
  9. M.O. Jackson & S. Wilkie (2005): Endogenous Games and Mechanisms: Side Payments Among Players. Review of Economic Studies 72, pp. 543566, doi:10.1111/j.1467-937X.2005.00342.x.
  10. M.M. Kaminski (2019): Generalized Backward Induction: Justification for a Folk Algorithm. Games 34(3), doi:10.3390/g10030034.
  11. D. König (1927): Über eine Schlußweise aus dem Endlichen ins Unendliche. Acta Litt. Ac. Sci. 3, pp. 121–130.
  12. N.S. Kukushkin (2002): Perfect information and potential games. Games and Economic Behavior 38(2), pp. 306–317, doi:10.1006/game.2001.0859.
  13. G.J. Mailath & L. Samuelson (2006): Repeated Games and Reputation: Long-Run Relationships. Oxford University Press, doi:10.1093/acprof:oso/9780195300796.001.0001.
  14. L.M. Marx & J.M. Swinkels (1997): Order Independence for Iterated Weak Dominance. Games and Economic Behaviour 18, pp. 219–245, doi:10.1006/game.1997.0525.
  15. M.J. Osborne & A. Rubinstein (1994): A Course in Game Theory. The MIT Press.
  16. K. Ritzberger (2001): Foundations of Non-cooperative Game Theory. Oxford University Press, Oxford, UK.
  17. J.C. Rochet (1980): Selection on an Unique Equilibrium Value for Extensive Games with Perfect Information. Cahiers de mathématiques de la décision. Université Paris IX-Dauphine.
  18. S. Le Roux & A. Pauly (2020): A Semi-Potential for Finite and Infinite Games in Extensive Form. Dynamic Games and Applications 10, pp. 120–144, doi:10.1007/s13235-019-00301-7.
  19. U. Schwalbe & P. Walker (2001): Zermelo and the Early History of Game Theory. Games and Economic Behavior 34(1), pp. 123–137, doi:10.1006/game.2000.0794.
  20. R. Selten (1965): Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit. Zeitschrift für die gesamte Staatswisenschaft 121, pp. 301–324 and 667–689.
  21. A.S. Troelstra & D. van Dalen (1988): Constructivism in Mathematics an Introduction (Volume 1). Studies in Logic and the Foundations of Mathematics 121. Elsevier, doi:10.1016/S0049-237X(09)70523-3.
  22. J. von Neumann & O. Morgenstern (2004): Theory of Games and Economic Behavior (60th Anniversary Commemorative Edition). Princeton Classic Editions. Princeton University Press.
  23. E. Zermelo (1913): Über eine Anwendung der Mengenlehre auf die Theoriedes Schachspiels. In: Proc. of The Fifth International Congress of Mathematicians. Cambridge University Press, pp. 501–504.

Comments and questions to:
For website issues: