J. M. Baldwin (1926):
A technique of the Nanson preferential majority system of election.
Transactions and Proceedings of the Royal Society of Victoria 39,
pp. 45–52.
Sven Berg (1985):
Paradox of voting under an urn model: The effect of homogeneity.
Public Choice 47,
pp. 377–387,
doi:10.1007/BF00127533.
Felix Brandt, Vincent Conitzer & Ulle Endriss (2013):
Computational Social Choice.
In: Gerhard Weiss: Multiagent Systems.
MIT Press,
Cambridge, Mass.,
pp. 213–283.
Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang & Ariel D. Procaccia (2016):
Handbook of Computational Social Choice.
Cambridge University Press,
New York,
doi:10.1017/cbo9781107446984.003.
Felix Brandt, Christian Geist & Martin Strobel (2020):
Analyzing the Practical Relevance of the Condorcet Loser Paradox and the Agenda Contraction Paradox.
In: M. Diss & V. Merlin: Evaluating Voting Systems with Probability Models: Essays by and in Honor of William Gehrlein and Dominique Lepelley.
Springer,
Berlin,
pp. 97–115,
doi:10.1007/978-3-030-48598-6_5.
Felix Brandt, Johannes Hofbauer & Martin Strobel (2019):
Exploring the No-Show Paradox for Condorcet Extensions Using Ehrhart Theory and Computer Simulations.
In: Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS '19).
International Foundation for Autonomous Agents and MultiAgent Systems,
pp. 520–528.
Felix Brandt & Hans Georg Seedig (2014):
On the Discriminative Power of Tournament Solutions.
In: M. Lübbecke, A. Koster, P. Letmathe, R. Madlener, B. Peis & G. Walther: Operations Research Proceedings 2014.
Springer,
Cham,
pp. 53–58,
doi:10.1007/978-3-319-28697-6_8.
Markus Brill & Felix Fischer (2012):
The Price of Neutrality for the Ranked Pairs Method.
In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI-12).
AAAI Press,
pp. 1299–1305.
Ioannis Caragiannis, Edith Hemaspaandra & Lane A. Hemaspaandra (2016):
Dodgson's Rule and Young's Rule.
In: Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang & Ariel D. Procaccia: Handbook of Computational Social Choice.
Cambridge University Press,
New York,
pp. 103–126,
doi:10.1017/cbo9781107446984.005.
Vincent Conitzer & Toby Walsh (2016):
Barriers to Manipulation in Voting.
In: Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang & Ariel D. Procaccia: Handbook of Computational Social Choice.
Cambridge University Press,
New York,
pp. 127–145,
doi:10.1017/cbo9781107446984.006.
Clyde Hamilton Coombs (1964):
A Theory of Data.
John Wiley and Sons,
New York.
A. H. Copeland (1951):
A `reasonable' social welfare function.
Notes from a seminar on applications of mathematics to the social sciences, University of Michigan.
Charles L. Dodgson (1995):
A Method of Taking Votes on More Than Two Issues.
In: Iain McLean & Arnold Urken: Classics of Social Choice.
University of Michigan Press,
Ann Arbor,
pp. 288–298.
Keith Dowding & Martin Van Hees (2008):
In Praise of Manipulation.
British Journal of Political Science 38(1),
pp. 1–15,
doi:10.1017/S000712340800001X.
John Duggan (2013):
Uncovered Sets.
Social Choice and Welfare 41(3),
pp. 489–535,
doi:10.1007/s00355-012-0696-9.
Ulle Endriss (2017):
Trends in Computational Social Choice.
AI Access.
Piotr Faliszewski, Edith Hemaspaandra, Lane A. Hemaspaandra & Jörg Rothe (2007):
Llull and Copeland Voting Broadly Resist Bribery and Control.
In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence (AAAI-07).
AAAI Press,
pp. 724–730.
Dan S. Felsenthal & Hannu Nurmi (2016):
Two types of participation failure under nine voting methods in variable electorates.
Public Choice 168,
pp. 115–135,
doi:10.1007/s11127-016-0352-5.
Dan S. Felsenthal & Hannu Nurmi (2017):
Monotonicity failures afflicting procedures for electing a single candidate.
Springer,
Cham,
doi:10.1007/978-3-319-51061-3.
Dan S. Felsenthal & Nicolaus Tideman (2013):
Varieties of failure of monotonicity and participation under five voting methods.
Theory and Decision 75,
pp. 59–77,
doi:10.1007/s11238-012-9306-7.
Felix Fischer, Olivier Hudry & Rolf Niedermeier (2016):
Weighted Tournament Solutions.
In: Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang & Ariel D. Procaccia: Handbook of Computational Social Choice.
Cambridge University Press,
New York,
pp. 85–102,
doi:10.1017/cbo9781107446984.004.
Peter C. Fishburn (1977):
Condorcet Social Choice Functions.
SIAM Journal on Applied Mathematics 33(3),
pp. 469–489,
doi:10.1137/0133030.
Peter C. Fishburn & Steven J. Brams (1983):
Paradoxes of Preferential Voting.
Mathematics Magazine 56(4),
pp. 207–214,
doi:10.2307/2689808.
Rupert Freeman, Markus Brill & Vincent Conitzer (2015):
General Tiebreaking Schemes for Computational Social Choice.
In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2015).
International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC,
pp. 1401–1409.
William V. Gehrlein & Dominique Lepelley (2017):
Elections, Voting Rules and Paradoxical Outcomes.
Springer,
Cham,
doi:10.1007/978-3-319-64659-6.
Donald B. Gillies (1959):
Solutions to general non-zero-sum games.
In: A. W. Tucker & R. D. Luce: Contributions to the Theory of Games.
Princeton University Press,
Princeton, New Jersey,
doi:10.1515/9781400882168-005.
Bernard Grofman & Scott L. Feld (2004):
If you like the alternative vote (a.k.a. the instant runoff), then you ought to know about the Coombs rule.
Electoral Studies 23(4),
pp. 641–659,
doi:10.1016/j.electstud.2003.08.001.
Clarence Hoag & George Hallett (1926):
Proportional Representation.
Macmillan,
New York.
Wesley H. Holliday & Eric Pacuit (2020):
Split Cycle: A New Condorcet Consistent Voting Method Independent of Clones and Immune to Spoilers.
ArXiv:2004.02350.
Paul Horwich (2016):
Probability and Evidence.
Cambridge University Press,
Cambridge,
doi:10.1017/CBO9781316494219.
José L. Jimeno, Joaquín Pérez & Estefanía García (2009):
An extension of the Moulin No Show Paradox for voting correspondences.
Social Choice and Welfare 33(3),
pp. 343–359,
doi:10.1007/s00355-008-0360-6.
John G. Kemeny (1959):
Mathematics without Numbers.
Daedalus 88(4),
pp. 577–591.
Gerald H. Kramer (1977):
A dynamical model of political equilibrium.
Journal of Economic Theory 16(2),
pp. 310–334,
doi:10.1016/0022-0531(77)90011-4.
C. L. Mallows (1957):
Non-Null Ranking Models. I.
Biometrika 44(2),
pp. 114–130,
doi:10.2307/2333244.
John Marden (1995):
Analyzing and Modeling Rank Data.
CRC Press,
New York,
doi:10.1201/b16552.
Nicholas Mattei & Toby Walsh (2013):
PrefLib: A Library of Preference Data.
In: Proceedings of Third International Conference on Algorithmic Decision Theory.
Springer,
pp. 259–270,
doi:10.1007/978-3-642-41575-3_20.
Hervé Moulin (1988):
Condorcet's Principle Implies the No Show Paradox.
Journal of Economic Theory 45(1),
pp. 53–64,
doi:10.1016/0022-0531(88)90253-0.
E. J. Nanson (1882):
Methods of election.
Transactions and Proceedings of the Royal Society of Victoria 19,
pp. 197–240.
Nina Narodytska, Toby Walsh & Lirong Xia (2011):
Manipulation of Nanson's and Baldwin's Rules.
In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence.
AAAI Press,
pp. 713–718.
Emerson M. S. Niou (1987):
A Note on Nanson's Rule.
Public Choice 54(2),
pp. 191–193,
doi:10.1007/BF00123006.
Joaquín Pérez (2001):
The Strong No Show Paradoxes are a common flaw in Condorcet voting correspondences.
Social Choice and Welfare 18(3),
pp. 601–616,
doi:10.1007/s003550000079.
Florenz Plassmann & T. Nicolaus Tideman (2014):
How frequently do different voting rules encounter voting paradoxes in three-candidate elections?.
Social Choice and Welfare 42,
pp. 31–75,
doi:10.1007/s00355-013-0720-8.
M. Remzi Sanver & William S. Zwicker (2012):
Monotonicity properties and their adaptation to irresolute social choice rules.
Social Choice and Welfare 39(2/3),
pp. 371–398,
doi:10.1007/s00355-012-0654-6.
Markus Schulze (2011):
A new monotonic, clone-independent, reversal symmetric, and condorcet-consistent single-winner election method.
Social Choice and Welfare 36,
pp. 267–303,
doi:10.1007/s00355-010-0475-4.
Thomas Schwartz (1986):
The Logic of Collective Choice.
Columbia University Press,
New York,
doi:10.7312/schw93758.
Paul B. Simpson (1969):
On Defining Areas of Voter Choice: Professor Tullock on Stable Voting.
The Quarterly Journal of Economics 83(3),
pp. 478–490,
doi:10.2307/1880533.
John H. Smith (1973):
Aggregation of Preferences with Variable Electorate.
Econometrica 41(6),
pp. 1027–1041,
doi:10.2307/1914033.
Alan D. Taylor & Allison M. Pacelli (2008):
Mathematics and Politics: Strategy, Voting, Power, and Proof,
2nd edition.
Springer,
New York,
doi:10.1007/978-0-387-77645-3.
T. Nicolaus Tideman (1987):
Independence of Clones as a Criterion for Voting Rules.
Social Choice and Welfare 4,
pp. 185–206,
doi:10.1007/bf00433944.
Jun Wang, Sujoy Sikdar, Tyler Shepherd Zhibing Zhao, Chunheng Jiang & Lirong Xia (2019):
Practical Algorithms for Multi-Stage Voting Rules with Parallel Universes Tiebreaking.
In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19).
AAAI Press,
doi:10.1609/aaai.v33i01.33012189.
H. P. Young (1977):
Extending Condorcet's Rule.
Journal of Economic Theory 16,
pp. 335–353,
doi:10.1016/0022-0531(77)90012-6.
T. M. Zavist & T. Nicolaus Tideman (1989):
Complete Independence of Clones in the Ranked Pairs Rule.
Social Choice and Welfare 6,
pp. 167–173,
doi:10.1007/bf00303170.
William S. Zwicker (2016):
Introduction to the Theory of Voting.
In: Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang & Ariel D. Procaccia: Handbook of Computational Social Choice.
Cambridge University Press,
New York,
pp. 23–56,
doi:10.1017/cbo9781107446984.003.