References

  1. J. M. Baldwin (1926): A technique of the Nanson preferential majority system of election. Transactions and Proceedings of the Royal Society of Victoria 39, pp. 45–52.
  2. Sven Berg (1985): Paradox of voting under an urn model: The effect of homogeneity. Public Choice 47, pp. 377–387, doi:10.1007/BF00127533.
  3. Felix Brandt, Vincent Conitzer & Ulle Endriss (2013): Computational Social Choice. In: Gerhard Weiss: Multiagent Systems. MIT Press, Cambridge, Mass., pp. 213–283.
  4. Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang & Ariel D. Procaccia (2016): Handbook of Computational Social Choice. Cambridge University Press, New York, doi:10.1017/cbo9781107446984.003.
  5. Felix Brandt, Christian Geist & Martin Strobel (2020): Analyzing the Practical Relevance of the Condorcet Loser Paradox and the Agenda Contraction Paradox. In: M. Diss & V. Merlin: Evaluating Voting Systems with Probability Models: Essays by and in Honor of William Gehrlein and Dominique Lepelley. Springer, Berlin, pp. 97–115, doi:10.1007/978-3-030-48598-6_5.
  6. Felix Brandt, Johannes Hofbauer & Martin Strobel (2019): Exploring the No-Show Paradox for Condorcet Extensions Using Ehrhart Theory and Computer Simulations. In: Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS '19). International Foundation for Autonomous Agents and MultiAgent Systems, pp. 520–528.
  7. Felix Brandt & Hans Georg Seedig (2014): On the Discriminative Power of Tournament Solutions. In: M. Lübbecke, A. Koster, P. Letmathe, R. Madlener, B. Peis & G. Walther: Operations Research Proceedings 2014. Springer, Cham, pp. 53–58, doi:10.1007/978-3-319-28697-6_8.
  8. Markus Brill & Felix Fischer (2012): The Price of Neutrality for the Ranked Pairs Method. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI-12). AAAI Press, pp. 1299–1305.
  9. Ioannis Caragiannis, Edith Hemaspaandra & Lane A. Hemaspaandra (2016): Dodgson's Rule and Young's Rule. In: Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang & Ariel D. Procaccia: Handbook of Computational Social Choice. Cambridge University Press, New York, pp. 103–126, doi:10.1017/cbo9781107446984.005.
  10. Vincent Conitzer & Toby Walsh (2016): Barriers to Manipulation in Voting. In: Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang & Ariel D. Procaccia: Handbook of Computational Social Choice. Cambridge University Press, New York, pp. 127–145, doi:10.1017/cbo9781107446984.006.
  11. Clyde Hamilton Coombs (1964): A Theory of Data. John Wiley and Sons, New York.
  12. A. H. Copeland (1951): A `reasonable' social welfare function. Notes from a seminar on applications of mathematics to the social sciences, University of Michigan.
  13. Charles L. Dodgson (1995): A Method of Taking Votes on More Than Two Issues. In: Iain McLean & Arnold Urken: Classics of Social Choice. University of Michigan Press, Ann Arbor, pp. 288–298.
  14. Keith Dowding & Martin Van Hees (2008): In Praise of Manipulation. British Journal of Political Science 38(1), pp. 1–15, doi:10.1017/S000712340800001X.
  15. John Duggan (2013): Uncovered Sets. Social Choice and Welfare 41(3), pp. 489–535, doi:10.1007/s00355-012-0696-9.
  16. Ulle Endriss (2017): Trends in Computational Social Choice. AI Access.
  17. Piotr Faliszewski, Edith Hemaspaandra, Lane A. Hemaspaandra & Jörg Rothe (2007): Llull and Copeland Voting Broadly Resist Bribery and Control. In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence (AAAI-07). AAAI Press, pp. 724–730.
  18. Dan S. Felsenthal & Hannu Nurmi (2016): Two types of participation failure under nine voting methods in variable electorates. Public Choice 168, pp. 115–135, doi:10.1007/s11127-016-0352-5.
  19. Dan S. Felsenthal & Hannu Nurmi (2017): Monotonicity failures afflicting procedures for electing a single candidate. Springer, Cham, doi:10.1007/978-3-319-51061-3.
  20. Dan S. Felsenthal & Nicolaus Tideman (2013): Varieties of failure of monotonicity and participation under five voting methods. Theory and Decision 75, pp. 59–77, doi:10.1007/s11238-012-9306-7.
  21. Felix Fischer, Olivier Hudry & Rolf Niedermeier (2016): Weighted Tournament Solutions. In: Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang & Ariel D. Procaccia: Handbook of Computational Social Choice. Cambridge University Press, New York, pp. 85–102, doi:10.1017/cbo9781107446984.004.
  22. Peter C. Fishburn (1977): Condorcet Social Choice Functions. SIAM Journal on Applied Mathematics 33(3), pp. 469–489, doi:10.1137/0133030.
  23. Peter C. Fishburn & Steven J. Brams (1983): Paradoxes of Preferential Voting. Mathematics Magazine 56(4), pp. 207–214, doi:10.2307/2689808.
  24. Rupert Freeman, Markus Brill & Vincent Conitzer (2015): General Tiebreaking Schemes for Computational Social Choice. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2015). International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, pp. 1401–1409.
  25. William V. Gehrlein & Dominique Lepelley (2017): Elections, Voting Rules and Paradoxical Outcomes. Springer, Cham, doi:10.1007/978-3-319-64659-6.
  26. Donald B. Gillies (1959): Solutions to general non-zero-sum games. In: A. W. Tucker & R. D. Luce: Contributions to the Theory of Games. Princeton University Press, Princeton, New Jersey, doi:10.1515/9781400882168-005.
  27. Bernard Grofman & Scott L. Feld (2004): If you like the alternative vote (a.k.a. the instant runoff), then you ought to know about the Coombs rule. Electoral Studies 23(4), pp. 641–659, doi:10.1016/j.electstud.2003.08.001.
  28. Clarence Hoag & George Hallett (1926): Proportional Representation. Macmillan, New York.
  29. Wesley H. Holliday & Eric Pacuit (2020): Split Cycle: A New Condorcet Consistent Voting Method Independent of Clones and Immune to Spoilers. ArXiv:2004.02350.
  30. Paul Horwich (2016): Probability and Evidence. Cambridge University Press, Cambridge, doi:10.1017/CBO9781316494219.
  31. José L. Jimeno, Joaquín Pérez & Estefanía García (2009): An extension of the Moulin No Show Paradox for voting correspondences. Social Choice and Welfare 33(3), pp. 343–359, doi:10.1007/s00355-008-0360-6.
  32. John G. Kemeny (1959): Mathematics without Numbers. Daedalus 88(4), pp. 577–591.
  33. Gerald H. Kramer (1977): A dynamical model of political equilibrium. Journal of Economic Theory 16(2), pp. 310–334, doi:10.1016/0022-0531(77)90011-4.
  34. C. L. Mallows (1957): Non-Null Ranking Models. I. Biometrika 44(2), pp. 114–130, doi:10.2307/2333244.
  35. John Marden (1995): Analyzing and Modeling Rank Data. CRC Press, New York, doi:10.1201/b16552.
  36. Nicholas Mattei & Toby Walsh (2013): PrefLib: A Library of Preference Data. In: Proceedings of Third International Conference on Algorithmic Decision Theory. Springer, pp. 259–270, doi:10.1007/978-3-642-41575-3_20.
  37. Hervé Moulin (1988): Condorcet's Principle Implies the No Show Paradox. Journal of Economic Theory 45(1), pp. 53–64, doi:10.1016/0022-0531(88)90253-0.
  38. E. J. Nanson (1882): Methods of election. Transactions and Proceedings of the Royal Society of Victoria 19, pp. 197–240.
  39. Nina Narodytska, Toby Walsh & Lirong Xia (2011): Manipulation of Nanson's and Baldwin's Rules. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence. AAAI Press, pp. 713–718.
  40. Emerson M. S. Niou (1987): A Note on Nanson's Rule. Public Choice 54(2), pp. 191–193, doi:10.1007/BF00123006.
  41. Joaquín Pérez (2001): The Strong No Show Paradoxes are a common flaw in Condorcet voting correspondences. Social Choice and Welfare 18(3), pp. 601–616, doi:10.1007/s003550000079.
  42. Florenz Plassmann & T. Nicolaus Tideman (2014): How frequently do different voting rules encounter voting paradoxes in three-candidate elections?. Social Choice and Welfare 42, pp. 31–75, doi:10.1007/s00355-013-0720-8.
  43. Donald G. Saari (1995): Basic Geometry of Voting. Springer, Berlin, doi:10.1007/978-3-642-57748-2.
  44. M. Remzi Sanver & William S. Zwicker (2012): Monotonicity properties and their adaptation to irresolute social choice rules. Social Choice and Welfare 39(2/3), pp. 371–398, doi:10.1007/s00355-012-0654-6.
  45. Markus Schulze (2011): A new monotonic, clone-independent, reversal symmetric, and condorcet-consistent single-winner election method. Social Choice and Welfare 36, pp. 267–303, doi:10.1007/s00355-010-0475-4.
  46. Thomas Schwartz (1986): The Logic of Collective Choice. Columbia University Press, New York, doi:10.7312/schw93758.
  47. Paul B. Simpson (1969): On Defining Areas of Voter Choice: Professor Tullock on Stable Voting. The Quarterly Journal of Economics 83(3), pp. 478–490, doi:10.2307/1880533.
  48. John H. Smith (1973): Aggregation of Preferences with Variable Electorate. Econometrica 41(6), pp. 1027–1041, doi:10.2307/1914033.
  49. Alan D. Taylor & Allison M. Pacelli (2008): Mathematics and Politics: Strategy, Voting, Power, and Proof, 2nd edition. Springer, New York, doi:10.1007/978-0-387-77645-3.
  50. T. Nicolaus Tideman (1987): Independence of Clones as a Criterion for Voting Rules. Social Choice and Welfare 4, pp. 185–206, doi:10.1007/bf00433944.
  51. Jun Wang, Sujoy Sikdar, Tyler Shepherd Zhibing Zhao, Chunheng Jiang & Lirong Xia (2019): Practical Algorithms for Multi-Stage Voting Rules with Parallel Universes Tiebreaking. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19). AAAI Press, doi:10.1609/aaai.v33i01.33012189.
  52. H. P. Young (1977): Extending Condorcet's Rule. Journal of Economic Theory 16, pp. 335–353, doi:10.1016/0022-0531(77)90012-6.
  53. T. M. Zavist & T. Nicolaus Tideman (1989): Complete Independence of Clones in the Ranked Pairs Rule. Social Choice and Welfare 6, pp. 167–173, doi:10.1007/bf00303170.
  54. William S. Zwicker (2016): Introduction to the Theory of Voting. In: Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang & Ariel D. Procaccia: Handbook of Computational Social Choice. Cambridge University Press, New York, pp. 23–56, doi:10.1017/cbo9781107446984.003.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org