S. Abiteboul, R. Hull & V. Vianu (1995):
Foundations of Databases.
Addison-Wesley.
O. Arieli, M. Denecker & M. Bruynooghe (2007):
Distance semantics for database repair.
Annals of Mathematics and Artificial Intelligence 50(3),
pp. 389–415,
doi:10.1007/s10472-007-9074-1.
K. J. Arrow (1963):
Social Choice and Individual Values,
2nd edition.
John Wiley and Sons.
C. Baral, S. Kraus & J. Minker (1991):
Combining Multiple Knowledge Bases.
IEEE Transactions on Knowledge and Data Engineering 3(2),
pp. 208–220,
doi:10.1109/69.88001.
C. Baral, S. Kraus, J. Minker & V. S. Subrahmanian (1992):
Combining knowledge bases consisting of first-order theories.
Computational Intelligence 8(1),
doi:10.1016/0004-3702(80)90014-4.
F. Belardinelli & U. Grandi (2019):
A Social Choice Theoretic Perspective on Database Aggregation (Extended Abstract).
In: Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
H. A. Blair & V. S. Subrahmanian (1989):
Paraconsistent Logic Programming.
Theoretical Computer Science 68(2),
pp. 135–154,
doi:10.1016/0304-3975(89)90126-6.
R. Booth, E. Awad & I. Rahwan (2014):
Interval Methods for Judgment Aggregation in Argumentation.
In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR).
M. Caminada & G. Pigozzi (2011):
On judgment aggregation in abstract argumentation.
Autonomous Agents and Multiagent Systems 22(1),
pp. 64–102,
doi:10.1007/s10458-009-9116-7.
Ashok K. Chandra & Philip M. Merlin (1977):
Optimal Implementation of Conjunctive Queries in Relational Data Bases.
In: Proceedings of the Ninth Annual ACM Symposium on Theory of Computing,
STOC '77.
ACM,
New York, NY, USA,
pp. 77–90,
doi:10.1145/800105.803397.
W. Chen & U. Endriss (2017):
Preservation of Semantic Properties during the Aggregation of Abstract Argumentation Frameworks.
In: Proceedings of the 16th Conference on Theoretical Aspects of Rationality and Knowledge (TARK),
doi:10.1007/978-3-540-77684-0_4.
F. Dietrich & C. List (2007):
Arrow's Theorem in Judgment Aggregation.
Social Choice and Welfare 29(1),
pp. 19–33,
doi:10.1007/s00355-006-0196-x.
F. Dietrich & C. List (2007):
Judgment Aggregation by Quota Rules: Majority Voting Generalized.
Journal of Theoretical Politics 19(4),
pp. 391–424,
doi:10.1016/0022-0531(75)90062-9.
E. Dokow & R. Holzman (2010):
Aggregation of binary evaluations.
Journal of Economic Theory 145(2),
pp. 495–511,
doi:10.1016/j.jet.2007.10.004.
J. Doyle & M. P. Wellman (1991):
Impediments to Universal Preference-based Default Theories.
Artificial Intelligence 49(1),
pp. 97–128,
doi:10.1016/0004-3702(91)90007-7.
U. Endriss (2016):
Judgment Aggregation.
In: F. Brandt, V. Conitzer, U. Endriss, J. Lang & A. D. Procaccia: Handbook of Computational Social Choice.
Cambridge University Press,
doi:10.1017/CBO9781107446984.018.
U. Endriss & U. Grandi (2014):
Binary Aggregation by Selection of the Most Representative Voter.
In: Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI-2014).
U. Endriss & U. Grandi (2017):
Graph Aggregation.
Artificial Intelligence 245,
pp. 86–114,
doi:10.1016/j.artint.2017.01.001.
P. Everaere, S. Konieczny & P. Marquis (2015):
Belief Merging versus Judgment Aggregation.
In: Proceedings of the 14th International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
A. Gionis, H. Mannila & P. Tsaparas (2007):
Clustering aggregation.
ACM Transactions on Knowledge Discovery from Data 1(1),
pp. 4,
doi:10.1145/1217299.1217303.
U. Grandi & U. Endriss (2011):
Binary Aggregation with Integrity Constraints.
In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI).
U. Grandi & U. Endriss (2013):
Lifting Integrity Constraints in Binary Aggregation.
Artificial Intelligence 199–200,
pp. 45–66,
doi:10.1016/j.artint.2013.05.001.
E. Gregoire & S. Konieczny (2006):
Logic-based approaches to information fusion.
Information Fusion 7(1),
pp. 4 – 18,
doi:10.1016/j.inffus.2005.08.001.
Logic-based Approaches to Information Fusion.
F. van Harmelen, V. Lifschitz & B. Porter (2007):
Handbook of Knowledge Representation.
Elsevier Science,
San Diego, USA.
J. Hintikka (1962):
Knowledge and Belief: An Introduction to the Logic of the Two Notions.
Cornell University Press.
B. Kimelfeld, P. Kolaitis & J. Stoyanovich (2018):
Computational Social Choice Meets Databases.
In: Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI),
doi:10.24963/ijcai.2018/44.
S. Konieczny (2000):
On the Difference between Merging Knowledge Bases and Combining them.
In: Proceedings of the Seventh International Conference on Principles of Knowledge Representation and Reasoning (KR).
S Konieczny, J Lang & P Marquis (2004):
DA2 merging operators.
Artificial Intelligence 157(1),
pp. 49 – 79.
S. Konieczny & R. Pino Pérez (2002):
Merging Information Under Constraints: A Logical Framework.
Journal of Logic and Computation 12(5),
pp. 773–808,
doi:10.1093/logcom/12.5.773.
Sébastien Konieczny, Jérôme Lang & Pierre Marquis (2002):
Distance Based Merging: A General Framework and some Complexity Results.
In: Proceedings of the Eights International Conference on Principles and Knowledge Representation and Reasoning (KR).
P. Liberatore & M. Schaerf (1998):
Arbitration (or How to Merge Knowledge Bases).
IEEE Transactions on Knowledge and Data Engineering 10(1),
pp. 76–90,
doi:10.1109/69.667090.
L. Libkin (2015):
How to Define Certain Answers.
In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI).
Jinxin Lin & Alberto O. Mendelzon (1996):
Merging Databases under Constraints.
International Journal of Cooperative Information Systems 7,
pp. 55–76,
doi:10.1142/S021821579200009X.
D. Maier, J. Ullman & M. Vardi (1984):
On the Foundations of the Universal Relation Model.
ACM Transactions on Database Systems 9(2),
pp. 283–308,
doi:10.1145/329.318580.
P. Maynard-Zhang & D. J. Lehmann (2003):
Representing and Aggregating Conflicting Beliefs.
Journal of Artificial Intelligence Research 19,
pp. 155–203,
doi:10.1613/jair.1206.
M. Miller & D. Osherson (2009):
Methods for distance-based judgment aggregation.
Social Choice and Welfare 32(4),
pp. 575–601,
doi:10.1007/s00355-008-0340-x.
D. Porello & U. Endriss (2012):
Ontology merging as social choice: Judgment aggregation under the open world assumption.
Journal of Logic and Computation 24,
pp. 1229–1249,
doi:10.1093/logcom/exs056.
V. S. Subrahmanian (1992):
Paraconsistent Disjunctive Deductive Databases.
Theoretical Computer Science 93(1),
pp. 115–141,
doi:10.1016/0304-3975(92)90214-Z.