1. Dana Angluin (1980): Inductive Inference of Formal Languages from Positive Data. Information and Control 45, pp. 117–135, doi:10.1016/S0019-9958(80)90285-5.
  2. Dana Angluin (1988): Queries and concept learning. Machine Learning 2(4), pp. 319–342, doi:10.1023/A:1022821128753.
  3. Sorav Bansal & Alex Aiken (2006): Automatic Generation of Peephole Superoptimizers. In: Proceedings of the 12th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS XII. ACM, New York, NY, USA, pp. 394–403, doi:10.1145/1168857.1168906.
  4. Sorav Bansal & Alex Aiken (2008): Binary Translation Using Peephole Superoptimizers. In: OSDI, pp. 177–192.
  5. L. Blum & M. Blum (1975): Toward a mathematical theory of inductive inference. Information and Control 28(2), pp. 125–155, doi:10.1016/s0019-9958(75)90261-2.
  6. A Blumer, A Ehrenfeucht, D Haussler & M Warmuth (1986): Classifying Learnable Geometric Concepts with the Vapnik-Chervonenkis Dimension. In: Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC '86. ACM, New York, NY, USA, pp. 273–282, doi:10.1145/12130.12158.
  7. Krishnendu Chatterjee, Thomas A. Henzinger, Ranjit Jhala & Rupak Majumdar (2005): Counterexample-guided Planning.. In: UAI. AUAI Press, pp. 104–111.
  8. Yibin Chen, Sean Safarpour, João Marques-Silva & Andreas G. Veneris (2010): Automated Design Debugging With Maximum Satisfiability.. IEEE Trans. on CAD of Integrated Circuits and Systems 29(11), pp. 1804–1817, doi:10.1109/TCAD.2010.2061270.
  9. A. Cornuejols (1993): Getting Order Independence in Incremental Learning. In: Proc. of the 1993 AAAI Spring Symposium on Training Issues in Incremental Learning, Stanford, California, pp. 42–52.
  10. Jerome A. Feldman (1972): Some Decidability Results on Grammatical Inference and Complexity. Information and Control 20(3), pp. 244–262, doi:10.1016/S0019-9958(72)90424-X.
  11. E. Mark Gold (1967): Language identification in the limit. Information and Control 10(5), pp. 447–474, doi:10.1016/S0019-9958(67)91165-5.
  12. Alex Groce, Sagar Chaki, Daniel Kroening & Ofer Strichman (2006): Error Explanation with Distance Metrics. Int. J. Softw. Tools Technol. Transf. 8(3), pp. 229–247, doi:10.1007/s10009-005-0202-0.
  13. Sumit Gulwani, Susmit Jha, Ashish Tiwari & Ramarathnam Venkatesan (2011): Synthesis of loop-free programs. In: PLDI, pp. 62–73, doi:10.1145/1993498.1993506.
  14. David Haussler (1986): Quantifying the Inductive Bias in Concept Learning (Extended Abstract).. In: Tom Kehler: AAAI. Morgan Kaufmann, pp. 485–489. Available at
  15. Tibor Hegedűs (1994): Geometrical Concept Learning and Convex Polytopes. COLT '94. ACM, New York, NY, USA, pp. 228–236, doi:10.1145/180139.181124.
  16. Thomas A. Henzinger, Ranjit Jhala & Rupak Majumdar (2003): Counterexample-guided Control. ICALP'03. Springer-Verlag, Berlin, Heidelberg, pp. 886–902.
  17. Sanjay Jain (1999): Systems that learn: an introduction to learning theory. MIT press.
  18. Klaus P. Jantke & Hans-Rainer Beick (1981): Combining Postulates of Naturalness in Inductive Inference.. Elektronische Informationsverarbeitung und Kybernetik 17(8/9), pp. 465–484.
  19. Susmit Jha, Sumit Gulwani, Sanjit A. Seshia & Ashish Tiwari (2010): Oracle-guided Component-based Program Synthesis. ICSE '10. ACM, New York, NY, USA, pp. 215–224, doi:10.1145/1806799.1806833.
  20. Rajeev Joshi, Greg Nelson & Keith Randall (2002): Denali: A Goal-directed Superoptimizer. In: Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and Implementation, PLDI '02. ACM, New York, NY, USA, pp. 304–314, doi:10.1145/512529.512566.
  21. Michael J. Kearns, Robert E. Schapire & Linda M. Sellie (1992): Toward Efficient Agnostic Learning. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT '92. ACM, New York, NY, USA, pp. 341–352, doi:10.1145/130385.130424.
  22. S. Lange (2000): Algorithmic Learning of Recursive Languages. Mensch-und-Buch-Verlag.
  23. Steffen Lange & Thomas Zeugmann (1996): Incremental Learning from Positive Data. Journal of Computer and System Sciences 53(1), pp. 88 – 103, doi:10.1006/jcss.1996.0051.
  24. Steffen Lange, Thomas Zeugmann & Sandra Zilles (2008): Learning Indexed Families of Recursive Languages from Positive Data: A Survey. Theor. Comput. Sci. 397(1-3), pp. 194–232, doi:10.1016/j.tcs.2008.02.030.
  25. Zohar Manna & Richard Waldinger (1980): A Deductive Approach to Program Synthesis. ACM Trans. Program. Lang. Syst. 2(1), pp. 90–121, doi:10.1145/357084.357090.
  26. Zohar Manna & Richard Waldinger (1992): Fundamentals Of Deductive Program Synthesis. IEEE Transactions on Software Engineering 18, pp. 674–704, doi:10.1109/32.153379.
  27. Henry Massalin (1987): Superoptimizer: A Look at the Smallest Program. SIGARCH Comput. Archit. News 15(5), pp. 122–126, doi:10.1145/36177.36194.
  28. Antonio Morgado, Mark Liffiton & Joao Marques-Silva (2013): MaxSAT-Based MCS Enumeration. In: Armin Biere, Amir Nahir & Tanja Vos: Hardware and Software: Verification and Testing, Lecture Notes in Computer Science 7857. Springer Berlin Heidelberg, pp. 86–101, doi:10.1007/978-3-642-39611-3_13.
  29. Sara Porat & JeromeA. Feldman (1991): Learning automata from ordered examples. Machine Learning 7(2-3), pp. 109–138, doi:10.1007/BF00114841.
  30. Hartley Rogers, Jr. (1987): Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge, MA, USA.
  31. Ehud Y Shapiro (1982): Algorithmic Program Debugging.. MIT Press.
  32. Armando Solar Lezama (2008): Program Synthesis By Sketching. EECS Department, University of California, Berkeley.
  33. Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia & Vijay A. Saraswat (2006): Combinatorial sketching for finite programs.. In: ASPLOS, pp. 404–415, doi:10.1145/1168857.1168907.
  34. Saurabh Srivastava, Sumit Gulwani & Jeffrey S. Foster (2010): From Program Verification to Program Synthesis. SIGPLAN Not. 45(1), pp. 313–326, doi:10.1145/1707801.1706337.
  35. Chao Wang, Zijiang Yang, Franjo Ivanči\'c & Aarti Gupta (2006): Whodunit? Causal Analysis for Counterexamples. In: Susanne Graf & Wenhui Zhang: Automated Technology for Verification and Analysis, Lecture Notes in Computer Science 4218. Springer Berlin Heidelberg, pp. 82–95, doi:10.1007/11901914_9.
  36. Rolf Wiehagen (1976): limit detection of recursive functions by specific strategies. Electronic Information Processing and Cybernetics 12(1/2), pp. 93–99.
  37. Rolf Wiehagen (1990): A Thesis in Inductive Inference.. In: Jürgen Dix, Klaus P. Jantke & Peter H. Schmitt: Nonmonotonic and Inductive Logic, Lecture Notes in Computer Science 543. Springer, pp. 184–207, doi:10.1007/BFb0023324.

Comments and questions to:
For website issues: