1. S. Almagor, U. Boker & O Kupferman (2016): Formalizing and reasoning about quality. Journal of the ACM, doi:10.1145/2875421.
  2. Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, Nicolas Markey & Jiří Srba (2008): Infinite Runs in Weighted Timed Automata with Energy Constraints. In: Franck Cassez & Claude Jard: Formal Modeling and Analysis of Timed Systems, Lecture Notes in Computer Science 5215. Springer Berlin Heidelberg, pp. 33–47, doi:10.1007/978-3-540-85778-5_4.
  3. Thomas Brihaye, Veroniqué Bruyère & Julie De Pril (2010): Equilibria in quantitative reachability games. In: Proc. of CSR, LNCS 6072. Springer.
  4. Thomas Brihaye, Julie De Pril & Sven Schewe (2013): Multiplayer Cost Games with Simple Nash Equilibria. In: Logical Foundations of Computer Science, LNCS, pp. 59–73, doi:10.1007/978-3-642-35722-0_5.
  5. Thomas Brihaye, Gilles Geeraerts, Axel Haddad & Benjamin Monmege (2014): To Reach or not to Reach? Efficient Algorithms for Total-Payoff Games. arXiv 1407.5030.
  6. Nils Bulling & Valentin Goranko (2013): How to be both rich and happy: Combining quantitative and qualitative strategic reasoning about multi-player games (Extended Abstract). In: Proc. of Strategic Reasoning, doi:10.4204/EPTCS.112.8. Available at
  7. Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger & Mariëlle Stoelinga (2003): Resource Interfaces. In: Rajeev Alur & Insup Lee: Embedded Software, Lecture Notes in Computer Science 2855. Springer Berlin Heidelberg, pp. 117–133, doi:10.1007/978-3-540-45212-6_9.
  8. Krishnendu Chatterjee & Laurent Doyen (2012): Energy parity games. Theor. Comput. Sci. 458, pp. 49–60, doi:10.1016/j.tcs.2012.07.038.
  9. Lorenzo Clemente & Jean-François Raskin (2015): Multidimensional beyond Worst-Case and Almost-Sure Problems for Mean-Payoff Objectives. In: 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pp. 257–268, doi:10.1109/LICS.2015.33.
  10. Nathanaël Fijalkow & Martin Zimmermann (2014): Parity and Streett Games with Costs. Logical Methods in Computer Science 10(2), doi:10.2168/LMCS-10(2:14)2014.
  11. Yuri Gurevich & L. Harrington (1982): Trees, automata and games. In: Proc. STOC, doi:10.1145/800070.802177.
  12. Marcin Jurdzinski, Mike Paterson & Uri Zwick (2008): A Deterministic Subexponential Algorithm for Solving Parity Games. SIAM J. Comput. 38(4), pp. 1519–1532, doi:10.1137/070686652.
  13. Orna Kupferman (2016): On High-Quality Synthesis. In: S. Alexander Kulikov & J. Gerhard Woeginger: 11th International Computer Science Symposium in Russia, CSR 2016. Springer International Publishing, pp. 1–15, doi:10.1007/978-3-319-34171-2_1.
  14. Stéphane Le Roux (2013): Infinite Sequential Nash Equilibria. Logical Methods in Computer Science 9(2), doi:10.2168/LMCS-9(2:3)2013.
  15. Stéphane Le Roux & Arno Pauly (2014): Infinite Sequential Games with Real-valued Payoffs. In: CSL-LICS '14. ACM, pp. 62:1–62:10, doi:10.1145/2603088.2603120.
  16. Stéphane Le Roux & Arno Pauly (2015): Weihrauch Degrees of Finding Equilibria in Sequential Games. In: Arnold Beckmann, Victor Mitrana & Mariya Soskova: Evolving Computability, Lecture Notes in Computer Science 9136. Springer, pp. 246–257, doi:10.1007/978-3-319-20028-6_25.
  17. Stéphane Le Roux & Arno Pauly (2016): Extending finite memory determinacy: General techniques and an application to energy parity games. arXiv:1602.08912.
  18. Jean François Mertens (1987): Repeated Games. In: Proc. Internat. Congress Mathematicians. American Mathematical Society, pp. 1528–1577.
  19. Soumya Paul & Sunil Simon (2009): Nash Equilibrium in Generalised Muller Games. In: Ravi Kannan & K. Narayan Kumar: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, Leibniz International Proceedings in Informatics (LIPIcs) 4. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 335–346, doi:10.4230/LIPIcs.FSTTCS.2009.2330. Available at
  20. Julie De Pril (2013): Equilibria in Multiplayer Cost Games. Université de Mons.
  21. Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, Alexander Rabinovich & Jean-François Raskin (2015): The complexity of multi-mean-payoff and multi-energy games. Information and Computation 241, pp. 177 – 196, doi:10.1016/j.ic.2015.03.001. Available at

Comments and questions to:
For website issues: