1. D. Blackwell (1969): Infinite G_δ games with imperfect information. Zastowania Matematyki Applicationes Mathematicae.
  2. Felix Brandt, Markus Brill, Felix Fischer & Paul Harrenstein (2011): On the Complexity of Iterated Weak Dominance in Constant-sum Games. Theory of Computing Systems 49(1), pp. 162–181. Available at
  3. Vasco Brattka, Matthew de Brecht & Arno Pauly (2012): Closed Choice and a Uniform Low Basis Theorem. Annals of Pure and Applied Logic 163(8), pp. 968–1008, doi:10.1016/j.apal.2011.12.020.
  4. Vasco Brattka & Guido Gherardi (2011): Effective Choice and Boundedness Principles in Computable Analysis. Bulletin of Symbolic Logic 1, pp. 73 – 117, doi:10.2178/bsl/1294186663. ArXiv:0905.4685.
  5. Vasco Brattka, Stéphane Le Roux & Arno Pauly (2012): On the Computational Content of the Brouwer Fixed Point Theorem. In: S.Barry Cooper, Anuj Dawar & Benedikt Löwe: How the World Computes, Lecture Notes in Computer Science 7318. Springer Berlin Heidelberg, pp. 56–67, doi:10.1007/978-3-642-30870-3_7.
  6. Xi Chen, Xiaotie Deng & Shang-Hua Teng (2009): Settling the Complexity of Computing Two-player Nash Equilibria. J. ACM 56(3), pp. 14:1–14:57, doi:10.1145/1516512.1516516.
  7. Constantinos Daskalakis, Paul Goldberg & Christos Papadimitriou (2006): The Complexity of Computing a Nash Equilibrium. In: 38th ACM Symposium on Theory of Computing, pp. 71–78, doi:10.1145/1132516.1132527.
  8. Rod Downey & Michael Fellows (1999): Parameterized Complexity. Springer, doi:10.1007/978-1-4612-0515-9.
  9. Vladimir Estivill-Castro & Mahdi Parsa (2009): Computing Nash equilibria Gets Harder – New Results Show Hardness Even for Parameterized Complexity. In: Rod Downey & Prabhu Manyem: CATS 2009, CRPIT 94.
  10. Vladimir Estivill-Castro & Mahdi Parsa (2011): Single Parameter FPT-Algorithms for Non-trivial Games. In: Costas Iliopoulos & William Smyth: Combinatorial Algorithms, Lecture Notes in Computer Science 6460. Springer, pp. 121–124. Available at
  11. Andrew Gilpin, Javier Pena, Samid Hoda & Tuomas Sandholm (2007): Gradient-based algorithms for finding Nash equilibria in extensive form games. In: Proceedings of the 18th Int Conf on Game Theory, doi:10.1007/978-3-540-77105-0_9.
  12. Srihari Govindan & Robert Wilson (2003): A Global Newton Method to Compute Nash Equilibria. Journal of Economic Theory 110(1), pp. 65–86, doi:10.1016/S0022-0531(03)00005-X.
  13. Danny Hermelin, Chien-Chung Huang, Stefan Kratsch & Magnus Wahlström (2010): Parameterized Two-Player Nash Equilibrium. CoRR abs/1006.2063. Available at
  14. Kojiro Higuchi & Arno Pauly (2013): The degree-structure of Weihrauch-reducibility. Logical Methods in Computer Science 9(2), doi:10.2168/LMCS-9(2:2)2013.
  15. Xiang Jiang (2011): Efficient Decomposition of Games. Bachelor's thesis. University of Cambridge.
  16. Xiang Jiang & Arno Pauly (2012): Efficient Decomposition of Bimatrix Games.
  17. Donald Knuth, Christos Papadimitriou & John Tsitsiklis (1988): A note on strategy elimination in bimatrix games. Operations Research Letters 7(3), pp. 103–107, doi:10.1016/0167-6377(88)90075-2.
  18. Stéphane Le Roux & Arno Pauly (2014): Infinite sequential games with real-valued payoffs. arXiv:1401.3325.
  19. Donald A. Martin (1998): The Determinacy of Blackwell Games. Journal of Symbolic Logic 63(4), pp. 1565–1581, doi:10.2307/2586667.
  20. Richard McKelvey, Andrew McLennan & Theodore Turocy (2010): Gambit: Software Tools for Game Theory. Version 0.2010.09.01.
  21. Christos H. Papadimitriou (1994): On the complexity of the parity argument and other inefficient proofs of existence. Journal of Computer and Systems Science 48(3), pp. 498–532, doi:10.1016/S0022-0000(05)80063-7.
  22. Arno Pauly (2009): The Complexity of Iterated Strategy Elimination. arXiv:0910.5107.
  23. Arno Pauly (2010): How Incomputable is Finding Nash Equilibria?. Journal of Universal Computer Science 16(18), pp. 2686–2710, doi:10.3217/jucs-016-18-2686.
  24. Arno Pauly (2012): Computable Metamathematics and its Application to Game Theory. University of Cambridge.

Comments and questions to:
For website issues: