1. Luca Aceto (1994): Deriving Complete Inference Systems for a Class of GSOS Languages Generation Regular Behaviours. In: Jonsson & Parrow, pp. 449–464, doi:10.1007/BFb0015025.
  2. Luca Aceto, Bard Bloom & Frits Vaandrager (1994): Turning SOS rules into equations. Inf. Comput. 111, pp. 1–52, doi:10.1006/inco.1994.1040. Available at
  3. Luca Aceto, Georgiana Caltais, Eugen-Ioan Goriac & Anna Ingolfsdottir (2011): PREG Axiomatizer : A ground bisimilarity checker for GSOS with predicates. In: CALCO 2011, LNCS. Springer. Available at To appear.
  4. J. C. M. Baeten, T. Basten & M. A. Reniers (2010): Process Algebra: Equational Theories of Communicating Processes. Cambridge Tracts in Theoretical Computer Science 50. Cambridge University Press, Cambridge.
  5. J. C. M. Baeten & W. P. Weijland (1990): Process Algebra. Cambridge University Press, New York, NY, USA.
  6. Jos C. M. Baeten & Erik P. de Vink (2004): Axiomatizing GSOS with termination. J. Log. Algebr. Program. 60-61, pp. 323–351, doi:10.1016/j.jlap.2004.03.001.
  7. J A Bergstra & J W Klop (1986): Verification of an alternating bit protocol by means of process algebra. In: Proceedings of the International Spring School on Mathematical method of specification and synthesis of software systems '85. Springer-Verlag New York, Inc., New York, NY, USA, pp. 9–23. Available at
  8. Bard Bloom, Sorin Istrail & Albert R. Meyer (1995): Bisimulation can't be traced. J. ACM 42, pp. 232–268, doi:10.1145/200836.200876.
  9. Marcello M. Bonsangue, Jan J. M. M. Rutten & Alexandra Silva (2009): An Algebra for Kripke Polynomial Coalgebras. In: LICS. IEEE Computer Society, pp. 49–58, doi:10.1109/LICS.2009.18.
  10. Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart\'ı-Oliet, José Meseguer & Carolyn L. Talcott (2007): All About Maude - A High-Performance Logical Framework, How to Specify, Program and Verify Systems in Rewriting Logic. Lecture Notes in Computer Science 4350. Springer.
  11. Sjoerd Cranen, MohammadReza Mousavi & Michel A. Reniers (2008): A Rule Format for Associativity. In: Franck van Breugel & Marsha Chechik: Proceedings of the 19th International Conference on Concurrency Theory (CONCUR'08), Lecture Notes in Computer Science 5201. Springer-Verlag, Berlin, Germany, Toronto,Canada, pp. 447–461, doi:10.1007/978-3-540-85361-9_35.
  12. M. Gazda & W.J. Fokkink (2010): Turning GSOS into equations for linear time-branching time semantics. 2nd Young Researchers Workshop on Concurrency Theory - YR-CONCUR'10, Paris. Available at
  13. R.J. van Glabbeek (2001): The Linear Time - Branching Time Spectrum I. The Semantics of Concrete, Sequential Processes. In: A. Ponse S.A. Smolka J.A. Bergstra: Handbook of Process Algebra. Elsevier, pp. 3–99.
  14. C.A.R. Hoare (1985): Communicating Sequential Processes. Prentice-Hall International, Englewood Cliffs.
  15. Bengt Jonsson & Joachim Parrow (1994): CONCUR '94, Concurrency Theory, 5th International Conference, Uppsala, Sweden, August 22-25, 1994, Proceedings. Lecture Notes in Computer Science 836. Springer.
  16. R. Milner (1989): Communication and Concurrency. Prentice-Hall International, Englewood Cliffs.
  17. D. Park (1981): Concurrency and automata on infinite sequences. In: P. Deussen: 5th GI Conference, Karlsruhe, Germany, Lecture Notes in Computer Science 104. Springer-Verlag, pp. 167–183, doi:10.1007/BFb0017309.
  18. Irek Ulidowski (2000): Finite axiom systems for testing preorder and De Simone process languages. Theor. Comput. Sci. 239(1), pp. 97–139, doi:10.1016/S0304-3975(99)00214-5.
  19. Chris Verhoef (1995): A Congruence Theorem for Structured Operational Semantics with Predicates and Negative Premises. Nordic Journal on Computing 2(2), pp. 274–302.

Comments and questions to:
For website issues: