ETH Robustness Analyzer for Neural Networks (ERAN) github repository https://github.com/eth-sri/eran, last accessed 2021-04-10 François Chollet Keras https://keras.io/, last accessed 2021-02-19 Martin Davis George Logemann Donald Loveland 1962 A Machine Program for Theorem-Proving Communications of the ACM 5 7 394397 10.1145/368273.368557 Martin Fränzle Christian Herde Stefan Ratschan Tobias Schubert Tino Teige 2007 Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure Journal of Satisfiability, Boolean Modeling and Computation 209–236 10.3233/SAT190012 Braddock Gaskill 2018 ONNX: the Open Neural Network Exchange Format Linux Journal https://www.linuxjournal.com/content/onnx-open-neural-network-exchange-format Last accessed 2021-10-27 Timon Gehr Matthew Mirman Dana Drachsler-Cohen Petar Tsankov Swarat Chaudhuri Martin Vechev 2018 AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation 2018 IEEE Symposium on Security and Privacy (SP) 3–18 10.1109/SP.2018.00058 Christian Herde 2011 Efficient Solving of Large Arithmetic Constraint Systems with Complex Boolean Structure: Integration of DPLL and Interval Constraint Solving - ETCS model Vieweg+Teubner Research 10.1007/978-3-8348-9949-1 Xiaowei Huang Marta Kwiatkowska Sen Wang Min Wu 2017 Safety Verification of Deep Neural Networks Rupak Majumdar Viktor Kunčak Computer Aided Verification Springer 3–29 10.1007/978-3-319-63387-9_1 Radoslav Ivanov James Weimer Rajeev Alur George J. Pappas Insup Lee 2019 Verisig: Verifying Safety Properties of Hybrid Systems with Neural Network Controllers Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control HSCC '19 Association for Computing Machinery
New York, NY, USA
169178 10.1145/3302504.3311806
Guy Katz Clark W. Barrett David L. Dill Kyle Julian Mykel J. Kochenderfer 2017 Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks Rupak Majumdar Viktor Kunčak Computer Aided Verification Springer 97–117 10.1007/978-3-319-63387-9_5 Guy Katz Derek A. Huang Duligur Ibeling Kyle Julian Christopher Lazarus Rachel Lim Parth Shah Shantanu Thakoor Haoze Wu Aleksandar Zelji\'c David L. Dill Mykel J. Kochenderfer Clark Barrett 2019 The Marabou Framework for Verification and Analysis of Deep Neural Networks Isil Dillig Serdar Tasiran Computer Aided Verification Springer International Publishing
Cham
443–452 10.1007/978-3-030-25540-4_26
Diederik P. Kingma Jimmy Ba 2017 Adam: A Method for Stochastic Optimization https://arxiv.org/abs/1412.6980 Alex Krizhevsky 2009 Learning multiple layers of features from tiny images Technical Report Department of Computer Science, University of Toronto https://www.cs.toronto.edu/~kriz/cifar.html Alex Krizhevsky Ilya Sutskever Geoffrey Hinton 2012 ImageNet Classification with Deep Convolutional Neural Networks Neural Information Processing Systems 25 10.1145/3065386 Yann LeCun Corinna Cortes Christopher J. C. Burges MNIST http://yann.lecun.com/exdb/mnist/, last accessed 2021-07-08 Guido Manfredi Yannick Jestin 2016 An introduction to ACAS Xu and the challenges ahead 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC) 1–9 10.1109/DASC.2016.7778055 Leonardo de Moura Nikolaj Bjørner 2008 Z3: An Efficient SMT Solver C. R. Ramakrishnan Jakob Rehof Tools and Algorithms for the Construction and Analysis of Systems Springer 337–340 10.1007/978-3-540-78800-3_24 Luca Pulina Armando Tacchella 2010 An Abstraction-Refinement Approach to Verification of Artificial Neural Networks Tayssir Touili Byron Cook Paul Jackson Computer Aided Verification Springer 243–257 10.1007/978-3-642-14295-6_24 Luca Pulina Armando Tacchella 2012 Challenging SMT Solvers to Verify Neural Networks AI Commun. 25 2 117–135 10.3233/AIC-2012-0525 http://dl.acm.org/citation.cfm?id=2350156.2350160 Francesca Rossi Peter van Beek Toby Walsh 2006 Handbook of Constraint Programming (Foundations of Artificial Intelligence) Elsevier Science Inc.
USA
Karsten Scheibler Leonore Winterer Ralf Wimmer Bernd Becker 2015 Towards Verification of Artificial Neural Networks Ulrich Heinkel Daniel Kriesten Marko Rößler Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen Technische Universität Chemnitz Professur Schaltkreis- und Systementwurf 30–40 Siddharth Sharma Simone Sharma Anidhya Athaiya 2020 Activation Functions in Neural Networks International Journal of Engineering Applied Sciences and Technology 4 310–316 10.33564/IJEAST.2020.v04i12.054 Weiming Xiang Patrick Musau Ayana A. Wild Diego Manzanas Lopez Nathaniel Hamilton Xiaodong Yang Joel Rosenfeld Taylor T. Johnson 2018 Verification for Machine Learning, Autonomy, and Neural Networks Survey https://arxiv.org/pdf/1810.01989.pdf