1. ETH Robustness Analyzer for Neural Networks (ERAN) github repository., last accessed 2021-04-10.
  2. François Chollet: Keras., last accessed 2021-02-19.
  3. Martin Davis, George Logemann & Donald Loveland (1962): A Machine Program for Theorem-Proving. Communications of the ACM 5(7), pp. 394397, doi:10.1145/368273.368557.
  4. Martin Fränzle, Christian Herde, Stefan Ratschan, Tobias Schubert & Tino Teige (2007): Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. Journal of Satisfiability, Boolean Modeling and Computation, pp. 209–236, doi:10.3233/SAT190012.
  5. Braddock Gaskill (2018): ONNX: the Open Neural Network Exchange Format. Linux Journal. Available at Last accessed 2021-10-27.
  6. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri & Martin Vechev (2018): AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3–18, doi:10.1109/SP.2018.00058.
  7. Christian Herde (2011): Efficient Solving of Large Arithmetic Constraint Systems with Complex Boolean Structure: Integration of DPLL and Interval Constraint Solving - ETCS model. Vieweg+Teubner Research, doi:10.1007/978-3-8348-9949-1.
  8. Xiaowei Huang, Marta Kwiatkowska, Sen Wang & Min Wu (2017): Safety Verification of Deep Neural Networks. In: Rupak Majumdar & Viktor Kunčak: Computer Aided Verification. Springer, pp. 3–29, doi:10.1007/978-3-319-63387-9_1.
  9. Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas & Insup Lee (2019): Verisig: Verifying Safety Properties of Hybrid Systems with Neural Network Controllers. In: Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, HSCC '19. Association for Computing Machinery, New York, NY, USA, pp. 169178, doi:10.1145/3302504.3311806.
  10. Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian & Mykel J. Kochenderfer (2017): Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. In: Rupak Majumdar & Viktor Kunčak: Computer Aided Verification. Springer, pp. 97–117, doi:10.1007/978-3-319-63387-9_5.
  11. Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zelji\'c, David L. Dill, Mykel J. Kochenderfer & Clark Barrett (2019): The Marabou Framework for Verification and Analysis of Deep Neural Networks. In: Isil Dillig & Serdar Tasiran: Computer Aided Verification. Springer International Publishing, Cham, pp. 443–452, doi:10.1007/978-3-030-25540-4_26.
  12. Diederik P. Kingma & Jimmy Ba (2017): Adam: A Method for Stochastic Optimization. Available at
  13. Alex Krizhevsky (2009): Learning multiple layers of features from tiny images. Technical Report. Department of Computer Science, University of Toronto. Available at
  14. Alex Krizhevsky, Ilya Sutskever & Geoffrey Hinton (2012): ImageNet Classification with Deep Convolutional Neural Networks. Neural Information Processing Systems 25, doi:10.1145/3065386.
  15. Yann LeCun, Corinna Cortes & Christopher J. C. Burges: MNIST., last accessed 2021-07-08.
  16. Guido Manfredi & Yannick Jestin (2016): An introduction to ACAS Xu and the challenges ahead. In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), pp. 1–9, doi:10.1109/DASC.2016.7778055.
  17. Leonardo de Moura & Nikolaj Bjørner (2008): Z3: An Efficient SMT Solver. In: C. R. Ramakrishnan & Jakob Rehof: Tools and Algorithms for the Construction and Analysis of Systems. Springer, pp. 337–340, doi:10.1007/978-3-540-78800-3_24.
  18. Luca Pulina & Armando Tacchella (2010): An Abstraction-Refinement Approach to Verification of Artificial Neural Networks. In: Tayssir Touili, Byron Cook & Paul Jackson: Computer Aided Verification. Springer, pp. 243–257, doi:10.1007/978-3-642-14295-6_24.
  19. Luca Pulina & Armando Tacchella (2012): Challenging SMT Solvers to Verify Neural Networks. AI Commun. 25(2), pp. 117–135, doi:10.3233/AIC-2012-0525. Available at
  20. Francesca Rossi, Peter van Beek & Toby Walsh (2006): Handbook of Constraint Programming (Foundations of Artificial Intelligence). Elsevier Science Inc., USA.
  21. Karsten Scheibler, Leonore Winterer, Ralf Wimmer & Bernd Becker (2015): Towards Verification of Artificial Neural Networks. In: Ulrich Heinkel, Daniel Kriesten & Marko Rößler: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen. Technische Universität Chemnitz Professur Schaltkreis- und Systementwurf, pp. 30–40.
  22. Siddharth Sharma, Simone Sharma & Anidhya Athaiya (2020): Activation Functions in Neural Networks. International Journal of Engineering Applied Sciences and Technology 4, pp. 310–316, doi:10.33564/IJEAST.2020.v04i12.054.
  23. Weiming Xiang, Patrick Musau, Ayana A. Wild, Diego Manzanas Lopez, Nathaniel Hamilton, Xiaodong Yang, Joel Rosenfeld & Taylor T. Johnson (2018): Verification for Machine Learning, Autonomy, and Neural Networks Survey. Available at

Comments and questions to:
For website issues: