1. E. Asarin, T. Dang & A. Girard (2007): Hybridization methods for the analysis of non-linear systems. Acta Informatica 7(43), pp. 451–476, doi:10.1007/s00236-006-0035-7.
  2. E. Asarin, T. Dang & O. Maler (2002): The d/dt tool for verification of hybrid systems. In: In International Conference on Computer Aided Verification. Springer, pp. 365–370.
  3. F. Blanchini & S. Miani (2007): Set-Theoretic Methods in Control. Springer Science & Business Media, doi:10.1007/978-3-319-17933-9.
  4. O. Bouissou, A. Chapoutot, A. Djaballah & M. Kieffer (2014): Computation of parametric barrier functions for dynamical systems using interval analysis. In: 2014 IEEE 53rd Annual Conference on Decision and Control (CDC), pp. 753–758, doi:10.1109/CDC.2014.7039472.
  5. R. Boukezzoula, L. Jaulin, B. Desrochers & D. Coquin (2020): Thick Fuzzy Sets and Their Potential Use in Uncertain Fuzzy Computations and Modeling. IEEE Transactions on Fuzzy Systems, doi:10.1109/TFUZZ.2020.3018550.
  6. Q. Brefort, L. Jaulin, M. Ceberio & V. Kreinovich (2014): If we take into account that constraints are soft,then processing constraints Becomes algorithmically solvable. In: Proceedings of the IEEE Series of Symposia on Computational Intelligence SSCI'2014. Orlando, Florida, December 9-12, doi:10.1109/CIES.2014.7011823.
  7. P. Cousot & R. Cousot (1977): Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. In: Conference Record of the Fourth ACM Symposium on Principles of Programming Languages, Los Angeles, California, pp. 238–252.
  8. N. Delanoue, L. Jaulin & B. Cottenceau (2006): Attraction domain of a nonlinear system using interval analysis. In: Twelfth International Conference on Principles and Practice of Constraint Programming (IntCP 2006), France, Nantes, pp. 181–189.
  9. B. Desrochers & L. Jaulin (2017): Computing a guaranteed approximation the zone explored by a robot. IEEE Transaction on Automatic Control 62(1), pp. 425–430, doi:10.1109/TAC.2016.2530719.
  10. B. Desrochers & L. Jaulin (2017): Thick set inversion. Artifical Intelligence 249, pp. 1–18, doi:10.1016/j.artint.2017.04.004.
  11. B. Desrochers, S. Lacroix & L. Jaulin (2015): Set-Membership Approach to the Kidnapped Robot Problem. In: IROS 2015, doi:10.1109/IROS.2015.7353897.
  12. S. Drakunov & V. Utkin (1992): Sliding mode control in dynamic systems. International Journal of Control 55(4), pp. 1029–1037, doi:10.1016/0005-1098(76)90076-5.
  13. D. Dubois, L. Jaulin & H. Prade (2020): Thick Sets, Multiple-Valued Mappings and Possibility Theory, pp. 101–109. Springer.
  14. G. Frehse (2008): PHAVer: Algorithmic Verification of Hybrid Systems. International Journal on Software Tools for Technology Transfer 10(3), pp. 23–48, doi:10.1007/s10009-007-0062-x.
  15. E. Goubault & S. Putot (2006): Static Analysis of Numerical Algorithms. In: In Proceedings of SAS 06, LNCS 4134. Springer-Verlag, pp. 18–34.
  16. L. Jaulin & F. Le Bars (2020): Characterizing sliding surfaces of cyber-physical systems. Acta Cybernetica 24, pp. 431–448, doi:10.4467/20838476SI.11.001.0287.
  17. M. Konecny, W. Taha, J. Duracz, A. Duracz & A. Ames (2013): Enclosing the behavior of a hybrid system up to and beyond a Zeno point. In: Cyber-Physical Systems, Networks, and Applications (CPSNA), doi:10.1109/CPSNA.2013.6614258.
  18. V. Kreinovich, A.V. Lakeyev, J. Rohn & P.T. Kahl (1997): Computational Complexity and Feasibility of Data Processing and Interval Computations. Reliable Computing 4(4), pp. 405–409, doi:10.1007/978-1-4757-2793-7.
  19. T. Le Mézo, L. Jaulin & B. Zerr (2017): An interval approach to compute invariant sets. IEEE Transaction on Automatic Control 62, pp. 4236–4243, doi:10.1109/TAC.2017.2685241.
  20. I. Mitchell (2007): Comparing forward and backward reachability as tools for safety analysis. In: A. Bemporad, A. Bicchi & G. Buttazzo: Hybrid Systems: Computation and Control. Springer-Verlag, pp. 428–443, doi:10.1109/4.16303.
  21. I. Mitchell, A. Bayen & C. Tomlin (2001): Validating a Hamilton-Jacobi Approximation to Hybrid System Reachable Sets. In: M. Benedetto & A. Sangiovanni-Vincentelli: Hybrid Systems: Computation and Control, Lecture Notes in Computer Science 2034. Springer Berlin Heidelberg, pp. 418–432, doi:10.1006/jcph.1999.6345.
  22. R. E. Moore (1979): Methods and Applications of Interval Analysis. SIAM, Philadelphia, PA, doi:10.1137/1.9781611970906.
  23. N. Ramdani & N. Nedialkov (2011): Computing Reachable Sets for Uncertain Nonlinear Hybrid Systems using Interval Constraint Propagation Techniques. Nonlinear Analysis: Hybrid Systems 5(2), pp. 149–162, doi:10.1016/j.nahs.2010.05.010.
  24. S. Ratschan (2002): Approximate Quantified Constraint Solving by Cylindrical Box Decomposition. Reliable Computing 8(1), pp. 21–42, doi:10.1023/A:1014785518570.
  25. S. Ratschan & Z. She (2010): Providing a Basin of Attraction to a Target Region of Polynomial Systems by Computation of Lyapunov-like Functions. SIAM J. Control and Optimization 48(7), pp. 4377–4394, doi:10.1137/090749955.
  26. A. Rauh & E. Auer (2009): Interval Approaches to Reliable Control of Dynamical Systems. In: Computer-assisted proofs - tools, methods and applications.
  27. S. Rohou, L. Jaulin, M. Mihaylova, F. Le Bars & S. Veres (2018): Reliable non-linear state estimation involving time uncertainties. Automatica, pp. 379–388, doi:10.1016/j.automatica.2018.03.074.
  28. S. Romig, L. Jaulin & A. Rauh (2019): Using Interval Analysis to Compute the Invariant Set of a Nonlinear Closed-Loop Control System. Algorithms 12(262), doi:10.3390/a12120262.
  29. P. Saint-Pierre (2002): Hybrid kernels and capture basins for impulse constrained systems. In: C.J. Tomlin & M.R. Greenstreet: in Hybrid Systems: Computation and Control 2289. Springer-Verlag, pp. 378–392, doi:10.1007/3-540-48983-5.
  30. J. Alexandre Dit Sandretto & A. Chapoutot (2016): Validated Simulation of Differential Algebraic Equations with Runge-Kutta Methods. Reliable Computing 22.
  31. W. Taha & A. Duracz (2015): Acumen: An Open-source Testbed for Cyber-Physical Systems Research. In: CYCLONE'15, doi:10.1007/978-3-319-47063-4_11.
  32. D. Wilczak & P. Zgliczynski (2011): Cr-Lohner algorithm. Schedae Informaticae 20, pp. 9–46, doi:10.4467/20838476SI.11.001.0287.

Comments and questions to:
For website issues: