1. Yashwanth Annpureddy, Che Liu, Georgios Fainekos & Sriram Sankaranarayanan (2011): S-taliro: A tool for temporal logic falsification for hybrid systems. In: International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, pp. 254–257, doi:10.1007/978-3-642-19835-9_21.
  2. Ezio Bartocci & Pietro Lió (2016): Computational modeling, formal analysis, and tools for systems biology. PLoS computational biology 12(1), pp. e1004591, doi:10.1371/journal.pcbi.1004591.t001.
  3. Edmund M. Clarke & E. Allen Emerson (1982): Design and synthesis of synchronization skeletons using branching time temporal logic. In: Dexter Kozen: Logics of Programs. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 52–71, doi:10.1137/0201010.
  4. Ankush Desai, Tommaso Dreossi & Sanjit A Seshia (2017): Combining model checking and runtime verification for safe robotics. In: International Conference on Runtime Verification. Springer, pp. 172–189, doi:10.1007/978-3-642-35632-2_18.
  5. Alexandre Donzé (2010): Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: International Conference on Computer Aided Verification. Springer, pp. 167–170, doi:10.1007/3-540-36580-X_22.
  6. Alexandre Donzé, Thomas Ferrere & Oded Maler (2013): Efficient robust monitoring for STL. In: Computer Aided Verification. Springer, pp. 264–279, doi:10.1016/S0019-9958(65)90241-X.
  7. Tommaso Dreossi, Alexandre Donzé & Sanjit A Seshia (2019): Compositional falsification of cyber-physical systems with machine learning components. Journal of Automated Reasoning 63(4), pp. 1031–1053, doi:10.1007/BF01475864.
  8. Georgios E Fainekos & George J Pappas (2009): Robustness of temporal logic specifications for continuous-time signals. Theoretical Computer Science 410(42), pp. 4262–4291, doi:10.1016/j.tcs.2009.06.021.
  9. Markus Goldstein & Seiichi Uchida (2016): A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PloS one 11(4), pp. e0152173, doi:10.1371/journal.pone.0152173.t006.
  10. Xiaoqing Jin, Jyotirmoy V Deshmukh, James Kapinski, Koichi Ueda & Ken Butts (2014): Powertrain control verification benchmark. In: Hybrid systems: Computation and Control. ACM, pp. 253–262, doi:10.1145/2562059.2562140.
  11. Ron Koymans (1990): Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), pp. 255–299, doi:10.1007/BF01995674.
  12. Moisés F Lima, Bruno B Zarpelao, Lucas DH Sampaio, Joel JPC Rodrigues, Taufik Abrao & Mario Lemes Proença (2010): Anomaly detection using baseline and k-means clustering. In: SoftCOM 2010, 18th International Conference on Software, Telecommunications and Computer Networks. IEEE, pp. 305–309.
  13. Tie-Yan Liu (2009): Learning to Rank for Information Retrieval. Found. Trends Inf. Retr. 3(3), pp. 225–331, doi:10.1561/1500000016.
  14. Oded Maler & Dejan Nickovic (2004): Monitoring Temporal Properties of Continuous Signals. In: Yassine Lakhnech & Sergio Yovine: Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 152–166, doi:10.1007/3-540-45739-9_14.
  15. Wes McKinney (2010): Data Structures for Statistical Computing in Python. In: Stéfan van der Walt & Jarrod Millman: Python in Science Conference, pp. 51 – 56, doi:10.25080/Majora-92bf1922-00a.
  16. Yash Vardhan Pant, Rhudii A Quaye, Houssam Abbas, Akarsh Varre & Rahul Mangharam (2019): Fly-by-Logic: A Tool for Unmanned Aircraft System Fleet Planning Using Temporal Logic. In: NASA Formal Methods Symposium. Springer, pp. 355–362, doi:10.1007/978-3-642-15297-9_9.
  17. A. Pnueli (1977): The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science (sfcs 1977), pp. 46–57, doi:10.1109/SFCS.1977.32.
  18. Ingo Steinwart, Don Hush & Clint Scovel (2005): A classification framework for anomaly detection. Journal of Machine Learning Research 6(Feb), pp. 211–232, doi:10.5555/1046920.1058109.
  19. Cumhur Erkan Tuncali, Georgios Fainekos, Hisahiro Ito & James Kapinski (2018): Simulation-based adversarial test generation for autonomous vehicles with machine learning components. In: 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, pp. 1555–1562, doi:10.1109/IVS.2018.8500421.
  20. Marcell Vazquez-Chanlatte (2019): mvcisback/py-metric-temporal-logic: v0.1.1, doi:10.5281/zenodo.2548862.

Comments and questions to:
For website issues: