1. M. V. A. Andrade, J. L. D. Comba & J. Stolfi (1994): Affine Arithmetic. In: Interval'94, St Petersburg.
  2. E. Asarin, T. Dang & A. Girard (2007): Hybridization methods for the analysis of non-linear systems. Acta Informatica 7(43), pp. 451–476, doi:10.1007/s00236-006-0035-7.
  3. G. Chabert & L. Jaulin (2009): A Priori Error Analysis with Intervals. SIAM Journal on Scientific Computing 31(3), pp. 2214–2230, doi:10.1137/070696982.
  4. A. Chapoutot, J. Alexandre Dit Sandretto & O. Mullier (2015): Validated Explicit and Implicit Runge-Kutta Methods. In: Summer Workshop on Interval Methods.
  5. C. Combastel (2005): A State Bounding Observer for Uncertain Non-linear Continuous-time Systems based on Zonotopes. In: CDC-ECC '05, doi:10.1109/CDC.2005.1583327.
  6. I. Fantoni & R. Lozano (2001): Non-linear control for underactuated mechanical systems. Springer-Verlag, doi:10.1007/978-1-4471-0177-2.
  7. G. Frehse (2008): PHAVer: Algorithmic Verification of Hybrid Systems. International Journal on Software Tools for Technology Transfer 10(3), pp. 23–48, doi:10.1007/978-3-540-31954-2_17.
  8. E. R. Hansen (1992): Global Optimization using Interval Analysis. Marcel Dekker, New York, NY.
  9. L. Jaulin & J. Burger (1999): Proving stability of uncertain parametric models. Automatica, pp. 627–632, doi:10.1016/S0005-1098(98)00201-5.
  10. L. Jaulin, M. Kieffer, O. Didrit & E. Walter (2001): Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics. Springer-Verlag, London, doi:10.1007/978-1-4471-0249-6.
  11. Luc Jaulin & Fabrice Bars (2020): Characterizing Sliding Surfaces of Cyber-Physical Systems. Acta Cybernetica 24, pp. 431–448, doi:10.14232/actacyb.24.3.2020.9.
  12. R. B. Kearfott & V. Kreinovich (1996): Applications of Interval Computations. Kluwer, Dordrecht, the Netherlands, doi:10.1007/978-1-4613-3440-8.
  13. M. Lhommeau, L Jaulin & L. Hardouin (2007): Inner and outer approximation of capture basins using interval analysis. ICINCO 2007.
  14. R. Lohner (1987): Enclosing the solutions of ordinary initial and boundary value problems. In: E. Kaucher, U. Kulisch & Ch. Ullrich: Computer Arithmetic: Scientific Computation and Programming Languages. BG Teubner, Stuttgart, Germany, pp. 255–286.
  15. T. Le Mézo, L. Jaulin & B. Zerr (2019): Bracketing backward reach sets of a dynamical system. In: International Journal of Control, doi:10.1080/00207179.2019.1643910.
  16. R. E. Moore (1966): Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ.
  17. R. E. Moore (1979): Methods and Applications of Interval Analysis. SIAM, Philadelphia, PA, doi:10.1137/1.9781611970906.
  18. Ramon E Moore, R Baker Kearfott & Michael J Cloud (2009): Introduction to interval analysis. SIAM, doi:10.1137/1.9780898717716.
  19. A. Neumaier (1991): Interval Methods for Systems of Equations. Cambridge University Press, Cambridge, UK, doi:10.1017/CBO9780511526473.
  20. N. Ramdani & N. Nedialkov (2011): Computing Reachable Sets for Uncertain Nonlinear Hybrid Systems using Interval Constraint Propagation Techniques. Nonlinear Analysis: Hybrid Systems 5(2), pp. 149–162, doi:10.1016/j.nahs.2010.05.010.
  21. S. Ratschan & Z. She (2010): Providing a Basin of Attraction to a Target Region of Polynomial Systems by Computation of Lyapunov-Like Functions. SIAM Journal on Control and Optimization 48(7), pp. 4377–4394, doi:10.1137/090749955.
  22. N. Revol, K. Makino & M. Berz (2005): Taylor models and floating-point arithmetic: proof that arithmetic operations are validated in COSY. Journal of Logic and Algebraic Programming 64, pp. 135–154, doi:10.1016/j.jlap.2004.07.008.
  23. J. Rohn (1996): An algorithm for checking stability of symmetric interval matrices. IEEE Trans. Autom. Control 41(1), pp. 133–136, doi:10.1109/9.481618.
  24. S. Rohou, L. Jaulin, L. Mihaylova, F. Le Bars & S. Veres (2019): Reliable robot localization. ISTE Group, doi:10.1002/9781119680970.
  25. S. M. Rump (2001): INTLAB - INTerval LABoratory. In: J. Grabmeier, E. Kaltofen & V. Weispfennig: Handbook of Computer Algebra: Foundations, Applications, Systems. Springer-Verlag, Heidelberg, Germany.
  26. P. Saint-Pierre (2002): Hybrid kernels and capture basins for impulse constrained systems. In: C.J. Tomlin & M.R. Greenstreet: in Hybrid Systems: Computation and Control 2289. Springer-Verlag, pp. 378–392, doi:10.1007/3-540-45873-5_30.
  27. J.J. Slotine & W. Li (1991): Applied nonlinear control. Prentice Hall, Englewood Cliffs (N.J.). Available at
  28. W. Taha & A. Duracz: Acumen: An Open-source Testbed for Cyber-Physical Systems Research. In: CYCLONE'15, doi:10.1007/978-3-319-47063-4_11.
  29. Jian Wan (2007): Computationally reliable approaches of contractive model predictive control for discrete-time systems. PhD dissertation. Universitat de Girona, Girona, Spain.
  30. D. Wilczak & P. Zgliczynski (2011): Cr-Lohner algorithm. Schedae Informaticae 20, pp. 9–46, doi:10.4467/20838476SI.11.001.0287.

Comments and questions to:
For website issues: