References

  1. Kat Agres, Stephen McGregor, Matthew Purver & Geraint Wiggins (2015): Conceptualising Creativity: From Distributional Semantics to Conceptual Spaces. In: Proceedings of the 6th International Conference on Computational Creativity, Park City, UT. Available at http://computationalcreativity.net/iccc2015/proceedings/5_4Agres.pdf.
  2. Aristotle (1895): The Poetics. Macmillan and Co, London.
  3. Marco Baroni & Roberto Zamparelli (2010): Nouns are vectors, adjectives are matrices: Representing adjective-noun constructions in semantic space. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pp. 1183–1193. Available at http://dl.acm.org/citation.cfm?id=1870658.1870773.
  4. Lawrence W. Barsalou (1993): Theories of Memory, chapter Flexibility, Structure, and Linguistic Vagary in Concepts: Manifestations of a Compositional System of Perceptual Symbols. Lawrence Erlbaum Associates, Hove.
  5. Yoshua Bengio, R√©jean Ducharme, Pascal Vincent & Christian Jauvin (2003): A Neural Probabilistic Language Model. Journal of Machine Learning Research 3, pp. 1137–1155. Available at http://dl.acm.org/citation.cfm?id=944919.944966.
  6. Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston & Oksana Yakhnenko (2013): Translating Embeddings for Modeling Multi-relational Data. In: C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani & K. Q. Weinberger: Advances in Neural Information Processing Systems 26. Curran Associates, Inc., pp. 2787–2795.
  7. Stephen Clark (2015): Vector Space Models of Lexical Meaning. In: Shalom Lappin & Chris Fox: The Handbook of Contemporary Semantic Theory. Wiley-Blackwell, doi:10.1002/9781118882139.ch16.
  8. Ronan Collobert & Jason Weston (2008): A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning. In: Proceedings of the 25 th International Conference on Machine Learning, doi:10.1145/1390156.1390177.
  9. Robin Cooper (2012): Type Theory and Semantics in Flux. In: Ruth Kempson, Tim Fernando & Nicholas Asher: Philosophy of Linguistics. Elsevier, doi:10.1016/B978-0-444-51747-0.50009-3.
  10. Donald Davidson (1969): The Individuation of Events. In: Nicholas Rescher: Essays in Honor of Carl G. Hempel, pp. 216–234, doi:10.1007/978-94-017-1466-2_11.
  11. Daniel C. Dennett (1984): Cognitive Wheels: The Frame Problem of AI. In: Christopher Hookway: Minds, Machines, and Evolution: Philosophical Studies. Cambridge University Press, pp. 129–151.
  12. Joaquín Derrac & Steven Schockaert (2014): Characterising Semantic Relatedness Using Interpretable Directions in Conceptual Spaces. In: 2nd European Conference on Artificial Intelligence, pp. 243–248, doi:10.3233/978-1-61499-419-0-243.
  13. Jerry A. Fodor & Zenon W. Pylyshyn (1988): Connectionism and Cognitive Architecture: A Critical Analysis. Cognition 28(1-2), pp. 3–71, doi:10.1016/0010-0277(88)90031-5.
  14. Peter Gärdenfors (2000): Conceptual Space: The Geometry of Thought. The MIT Press, Cambridge, MA.
  15. Peter Gärdenfors (2014): The Geometry of Meaning: Semantics Based on Conceptual Spaces. The MIT Press, Cambridge, MA.
  16. Martin Haspelmath (2003): The geometry of grammatical meaning: semantic maps and cross-linguistic comparison. In: Michael Tomasello: The new psychology of language: cognitive and functional approaches to language structure, vol. 2. Lawrence Erlbaum, Mahwah, New Jersey/Londo, pp. 211–242. Available at http://wwwstaff.eva.mpg.de/~haspelmt/SemMaps.pdf.
  17. Mary B. Hesse (1963): Models and Analogies in Science. Sheed and Ward, New York.
  18. Omer Levy & Yoav Goldberg (2014): Linguistic Regularities in Sparse and Explicit Word Representations. In: Eighteenth Conference on Computational Natural Language Learning, doi:10.3115/v1/W14-1618.
  19. Stephen McGregor, Kat Agres, Matthew Purver & Geraint Wiggins (2015): From Distributional Semantics to Conceptual Spaces: A Novel Computational Method for Concept Creation. Journal of Artificial General Intelligence, doi:10.1515/jagi-2015-0004.
  20. Tomas Mikolov, Kai Chen, Greg Corrado & Jeffrey Dean (2013): Efficient Estimation of Word Representations in Vector Space. In: Proceedings of ICLR Workshop. Available at http://arxiv.org/abs/1301.3781.
  21. Tomas Mikolov, Wen tau Yih & Geoffrey Zweig (2013): Linguistic Regularities in Continuous Space Word Representations. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 246–251. Available at http://www.aclweb.org/anthology/N13-1090.
  22. Richard Montague (1974): English as a Formal Language. In: Richard H. Thompson: Formal Philosophy: selected papers of Richard Montague. Yale University Press, New Haven, CT.
  23. Jeffrey Pennington, Richard Socher & Christopher D. Manning (2014): GloVe: Global Vectors for Word Representation. In: Conference on Empirical Methods in Natural Language Processing, doi:10.3115/v1/D14-1162.
  24. Laura Rimell (2014): Distributional Lexical Entailment by Topic Coherence. In: Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, Gothenburg, doi:10.3115/v1/E14-1054.
  25. G. Salton, A. Wong & C. S. Yang (1975): A Vector Space Model for Automatic Indexing. In: Proceedings of the 12th ACM SIGIR Conference, pp. 137–150, doi:10.1145/361219.361220.
  26. Hinrich Schütze (1992): Dimensions of Meaning. In: Proceedings of the 1992 ACM/IEEE conference on Supercomputing, pp. 787–796, doi:10.1109/SUPERC.1992.236684.
  27. Dan Sperber & Deirdre Wilson (1995): Relevance: Communication and Cognition, 2nd edition. Blackwell.
  28. Peter D. Turney & Patrick Patel (2010): From Frequency to Meaning: Vector Space Models of Semantics. Journal of Artificial Intelligence Research 37, pp. 141–188, doi:10.1613/jair.2934.
  29. Dominic Widdows (2004): Geometry and Meaning. CSLI Publications, Stanford, CA.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org