1. B. Adams & M. Raubal (2009): A metric conceptual space algebra. In: Spatial information theory. Springer, pp. 51–68, doi:10.1007/978-3-642-03832-7_4.
  2. D. Bankova, B. Coecke, M. Lewis & D. Marsden (2015): Graded Entailment for Compositional Distributional Semantics. arXiv:1601.04908. Submitted.
  3. A. Carboni & R.F.C. Walters (1987): Cartesian bicategories I. Journal of pure and applied algebra 49(1), pp. 11–32, doi:10.1016/0022-4049(87)90121-6.
  4. B. Coecke, E. Grefenstette & M. Sadrzadeh (2013): Lambek vs. Lambek: Functorial vector space semantics and string diagrams for Lambek calculus. Annals of Pure and Applied Logic 164(11), pp. 1079–1100, doi:10.1016/j.apal.2013.05.009.
  5. B. Coecke & E.O. Paquette (2011): Categories for the practising physicist. In: New Structures for Physics. Springer, pp. 173–286, doi:10.1007/978-3-642-12821-9.
  6. B Coecke, M Sadrzadeh & S Clark (2010): Mathematical Foundations for a Compositional Distributional Model of Meaning. Linguistic Analysis 36, pp. 345–384.
  7. P. Gärdenfors (2004): Conceptual spaces: The geometry of thought. The MIT Press.
  8. P. Gärdenfors (2014): The geometry of meaning: Semantics based on conceptual spaces. MIT Press.
  9. B. Jacobs (2011): Coalgebraic walks, in quantum and Turing computation. In: Foundations of Software Science and Computational Structures. Springer, pp. 12–26, doi:10.1007/978-3-642-19805-2_2.
  10. H. Kamp & B. Partee (1995): Prototype theory and compositionality. Cognition 57(2), pp. 129–191, doi:10.1016/0010-0277(94)00659-9.
  11. D. Kartsaklis, M. Sadrzadeh, S. Pulman & B. Coecke (2013): Reasoning about meaning in natural language with compact closed categories and Frobenius algebras. In: J. Chubb, A. Eskandarian & V. Harizanov: Logic and Algebraic Structures in Quantum Computing. Cambridge University Press (CUP), pp. 199–222, doi:10.1017/cbo9781139519687.011.
  12. J. Lambek (1999): Type grammar revisited. In: Logical aspects of computational linguistics. Springer, pp. 1–27, doi:10.1007/3-540-48975-4_1.
  13. M. Lewis & J. Lawry (2016): Hierarchical conceptual spaces for concept combination. Artificial Intelligence 237, pp. 204 – 227, doi:10.1016/j.artint.2016.04.008. Available at
  14. K. Lund & C. Burgess (1996): Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instruments, & Computers 28(2), pp. 203–208, doi:10.3758/BF03204766.
  15. R. Piedeleu, D. Kartsaklis, B. Coecke & M Sadrzadeh (2015): Open System Categorical Quantum Semantics in Natural Language Processing. In: Lawrence S. Moss & Pawel Sobocinski: 6th Conference on Algebra and Coalgebra in Computer Science, CALCO 2015, June 24-26, 2015, Nijmegen, The Netherlands, LIPIcs 35. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 270–289, doi:10.4230/LIPIcs.CALCO.2015.270.
  16. A. Preller & M. Sadrzadeh (2011): Bell states and negative sentences in the distributed model of meaning. Electronic Notes in Theoretical Computer Science 270(2), pp. 141–153, doi:10.1016/j.entcs.2011.01.028.
  17. J.T. Rickard, J. Aisbett & G. Gibbon (2007): Reformulation of the theory of conceptual spaces. Information Sciences 177(21), pp. 4539–4565, doi:10.1016/j.ins.2007.05.023.

Comments and questions to:
For website issues: