1. Olga Lopez Acevedo & Thierry Gobron (2005): Quantum walks on Cayley Graphs. Journal of Physics A: Mathematical and General 39(3), pp. 585, doi:10.1103/PhysRevE.72.026113.
  2. Andris Ambainis, Eric Bach, Ashwin Nayak, Ashvin Vishwanath & John Watrous (2001): One-Dimensional Quantum Walks. In: Proceedings of the thirty-third annual ACM symposium on Theory of computing, pp. 37–49, doi:10.1145/380752.380757.
  3. Clement Ampadu (2011): Localization of two-dimensional five-state quantum walks. ArXiv preprint arXiv:1108.0984.
  4. Yuliy Baryshnikov, Wil Brady, Andrew Bressler & Robin Pemantle (2011): Two-dimensional quantum random walk. Journal of Statistical Physics 142(1), pp. 78–107, doi:10.1007/s10955-010-0098-2.
  5. Norman Bleistein & Richard A. Handelsman (1975): Asymptotic expansions of integrals. Courier Corporation.
  6. David A. Cox, John Little & Donal O'shea (2006): Using Algebraic Geometry. Springer Science & Business Media.
  7. Reinhard Diestel (2005): Graph Theory. Springer-Verlag. Graduate Texts in Mathematics, No. 101.
  8. David J. Griffiths & Darrell F. Schroeter (1982): Introduction to Quantum Mechanics. Cambridge University Press.
  9. Lucye Guilbeau (1930): The History of the Solution of the Cubic Equation. Mathematics News Letter, pp. 8–12, doi:10.2307/3027812.
  10. Norio Inui, Yoshinao Konishi & Norio Konno (2004): Localization of two-dimensional quantum walks. Physical Review A 69(5), doi:10.1080/00107151031000110776.
  11. Norio Inui, Norio Konno & Etsuo Segawa (2005): One-dimensional three-state quantum walk. Physical Review E 72(5), doi:10.1142/S0219749905001079.
  12. M. A. Jafarizadeh & R. Sufiani (2007): Investigation of continuous-time quantum walk on root lattice An and honeycomb lattice. Physica A: Statistical Mechanics 381, pp. 116–142, doi:10.1016/j.physa.2007.03.032.
  13. Norio Konno (2002): Quantum random walks in one dimension. Quantum Information Processing 1(5), pp. 345–354, doi:10.1023/A:1023413713008.
  14. Norio Konno (2010): Localization of an inhomogeneous discrete-time quantum walk on the line. Quantum Information Processing 9(3), doi:10.1007/s11128-009-0147-4.
  15. Erwin Kreyszig (1978): Introductory Functional Analysis with Applications. New York: Wiley.
  16. Parker Kuklinski (2017): Absorption Phenomena in Quantum Walks. Boston University.
  17. Changuan Lyu, Luyan Yu & Shengjun Wu (2015): Localization in quantum walks on a honeycomb network. Physical Review A 92(5), pp. 052305, doi:10.1103/PhysRevA.82.012303.
  18. T.D. Mackay, S.D. Bartlett, L.T. Stephenson & B.C. Sanders (2002): Quantum walks in higher dimensions. Journal of Physics A: Mathematical and General 35(12), pp. 2745, doi:10.1103/PhysRevA.65.032310.
  19. Armin Rainer (2013): Perturbation theory for normal operators. Transactions of the American Mathematical Society 365(10), pp. 5545–5577, doi:10.1090/S0002-9947-2013-05854-0.
  20. Martin Stefanak, I. Bezdekova & Igor Jex (2012): Continuous deformations of the Grover walk preserving localization. The European Physical Journal D 66, pp. 142, doi:10.1140/epjd/e2012-30146-9.
  21. Elias M. Stein & Timothy S. Murphy (1993): Harmonic Analysis: real-variable methods, orthogonality, and oscillatory integrals 3. Princeton University Press.
  22. James Joseph Sylvester (2012): The Collected Mathematical Papers of James Joseph Sylvester. Cambridge University Press.

Comments and questions to:
For website issues: