1. G. Benenti E. Paladino A. D'Arrigo, R. Lo Franco & G. Falci (2013): Hidden entanglement in the presence of random telegraph dephasing noise. Phys. Scr. T153(014014), doi:10.1088/0031-8949/2013/T153/014014. Available at
  2. B. Podolsky A. Einstein & N. Rosen (1935): Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?. Phys. Rev. 47(777), doi:10.1103/PhysRev.47.777.
  3. G. Ferranti R. Lo Franco G. Benenti E. Paladino G. Falci F. Sciarrino A. Orieux, A. D'arrigo & P. Mataloni (2015): Experimental on demand recovery of entanglement by local operations within non Markovian dynamics. Sci. Rep. 5(8575), doi:10.1038/srep08575. Available at
  4. M. P. Almeida M. Hor-Meyll S. P. Walborn P. H. Souto Ribeiro A. Salles, F. de Melo & L. Davidovich (2008): Experimental investigation of the dynamics of entanglement: Sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A 78(022322), doi:10.1103/PhysRevA.78.022322. Available at
  5. S. Maniscalco B. Bellomo, R. Lo Franco & G. Compagno (2010): Two-qubit entanglement dynamics for two different non-Markovian environments. Phys. Scr. T140(014014), doi:10.1088/0031-8949/2010/T140/014014. Available at
  6. D. O. Soares-Pinto P. Horodecki B. Leggio, R. Lo Franco & G. Compagno (2015): Distributed correlations and information flows within a hybrid multipartite quantum-classical system. Nature 92(032311), doi:10.1103/PhysRevA.92.032311. Available at
  7. T. M. Cover & J. A. Thomas (1991): Elements of Information Theory, 2nd edition, ISBN 0-471-20061-1. J. Wiley and Sons, New York, doi:10.1137/1036124.
  8. L.K. Castelano F.F. Fanchini & A.O. Caldeira (2010): Entanglement versus quantum discord in two coupled double quantum dots. New J. Phys 12(073009), doi:10.1088/1367-2630/12/7/073009. Available at
  9. R. Lo Franco & G. Compagno (2016): Quantum entanglement of identical particles by standard information-theoretic notions. Sci. Rep. 6(20603), doi:10.1038/srep20603. Available at
  10. C. Gerry & P. Knight (2005): Introductory quantum optics. ISBN 9780511791239. Cambridge University Press, Cambridge, doi:10.1119/1.2110623.
  11. L. Henderson & V. Vedral (2001): Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34(6899), doi:10.1088/0305-4470/34/35/315. Available at
  12. R. M. Serra J. Maziero, L. C. Cleri & V. Vedral (2009): Classical and quantum correlations under decoherence. Phys. Rev. A 80(044102), doi:10.1103/PhysRevA.80.044102. Available at
  13. C. F. Li-X. Y. Xu G. C. Guo E. Andersson R. Lo Franco J. S. Xu, K. Sun & G. Compagno (2013): Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4(2851), doi:10.1038/ncomms3851. Available at
  14. A. Osterloh L. Amico, R. Fazio & V. Vedral (2008): Entanglement in many-body systems. Rev. Mod. Phys. 80(517), doi:10.1103//RevModPhys.80.517. Available at
  15. F. de Melo L. Aolita & L. Davidovich (2015): Open system dynamics of entanglement: a key issues review. Rep. Prog. Phys. 78(042001), doi:10.1088/0034-4885/78/4/042001. Available at
  16. A. R. P. Rau M. Ali & G. Alber (2010): Quantum discord for two-qubit X-states. Phys. Rev. A 81(042105), doi:10.1103/PhysRevA.81.042105. Available at
  17. W. Roga R. Lo Franco M. Cianciaruso, T. R. Bromley & G. Adesso (2015): Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5(10177), doi:10.1038/srep10177. Available at
  18. F. Jiang M. Shi, W. Yang & J. Du (2011): Geometric picture of quantum discord for two-qubit quantum states. J. Phys. A: Math. Theor. 44(415304), doi:10.1088/1367-2630/13/7/073016. Available at
  19. M.C. de Oliveira M.F. Cornelio & F.F. Fanchini (2011): Entanglement Irreversibility from Quantum Discord and Quantum Deficit. Phys. Rev. Lett. 107(020502), doi:10.1103/PhysRevLett.107.020502. Available at
  20. M.A. Nielsen & I.L. Chuang (2000): Quantum Computation and Quantum Information, 1st edition, ISBN 9781107002173. Cambridge University Press, Cambridge, doi:10.1063/1.1428442.
  21. H. Ollivier & W. H. Zurek (2001): Quantum Discord: A Measure of the Quantumness of Correlations. Phys. Rev. Lett. 88(017901), doi:10.1103/PhysRevLett.88.017901. Available at
  22. M. Horodecki R. Horodecki, P. Horodecki & K. Horodecki (2009): Quantum entanglement. Sci. Rep. 81(865), doi:10.1103/RevModPhys.81.865. Available at
  23. G. Falci G. Compagno R. Lo Franco, A. D'arrigo & E. Paladino (2013): Spin-echo entanglement protection from random telegraph noise. Phys. Scr. T153(014043), doi:10.1088/0031-8949/2013/T153/014043. Available at
  24. G. Falci G. Compagno R. Lo Franco, A. D'Arrigo & E. Paladino (2014): Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling. Phys. Rev. B 90(054304), doi:10.1103/PhysRevB.90.054304. Available at
  25. E. Schrodinger (1935): Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23(807), doi:10.1007/BF01491891.
  26. R. Laflamme Y. Nakamura C Monroe T. D. Ladd, F. Jelezko & J. L. OBrien (2010): Quantum Computing. Nature 464(45-53), doi:10.1038/nature08812. Available at
  27. R. Lo Franco T. R. Bromley, M. Cianciaruso & G. Adesso (2014): Unifying approach to the quantification of bipartite correlations by Bures distance. J. Phys. A: Math. Theo. 47(405302), doi:10.1088/1751-8113/47/40/405302. Available at
  28. R. F. Werner (1989): Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(4277), doi:10.1103/physreva.40.4277. Available at
  29. William K. Wootters (1998): Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 80(2245), doi:10.1103/PhysRevLett.80.2245. Available at
  30. Y. J. Xia Z. X. Man & R. Lo Franco (2015): Cavity-based architecture to preserve quantum coherence and entanglement. Sci. Rep. 5(13843), doi:10.1038/srep13843. Available at
  31. Y. J. Xia Z. X. Man & R. Lo Franco (2015): Harnessing non-Markovian quantum memory by environmental coupling. Phys. Rev. A 92(012315), doi:10.1103/PhysRevA.92.012315. Available at
  32. W. H. Zurek (2003): Decoherence, einselection, and the quantum origins of the classical. Rev.Mod. Phys. 75(715), doi:10.1103/RevModPhys.75.715. Available at

Comments and questions to:
For website issues: