1. Miriam Backens (2014): The ZX-calculus is complete for stabilizer quantum mechanics. New J. Phys. 16(093021), doi:10.1088/1367-2630/16/9/093021.
  2. Ethan Bernstein & Umesh Vazirani (1997): Quantum complexity theory. SIAM Journal on Computing 26(5), pp. 1411–1473, doi:10.1137/S0097539796300921.
  3. Bob Coecke & Ross Duncan (2011): Interacting Quantum Observables: Categorical Algebra and Diagrammatics. New J. Phys 13(043016), doi:10.1088/1367-2630/13/4/043016.
  4. Bob Coecke, Eric Oliver Paquette & Dusko Pavlovic (2010): Classical and quantum structuralism. In: S. Gay & I. Mackie: Semantic Techniques in Quantum Computation, chapter 2. Cambridge University Press, pp. 29–69.
  5. Lars Eirik Danielsen & Matthew G Parker (2008): Edge local complementation and equivalence of binary linear codes. Designs, Codes and Cryptography 49(1-3), pp. 161–170, doi:10.1007/s10623-008-9190-x.
  6. Ross Duncan (2006): Types for Quantum Computing. Oxford University.
  7. Ross Duncan (2013): A graphical approach to measurement-based quantum computing. In: Chris Heunen, Mehrnoosh Sadrzadeh & Edward Grefenstette: Quantum Physics and Linguistics: A Compositional, Diagrammatic Discourse, chapter 3. Oxford University Press, doi:10.1093/acprof:oso/9780199646296.003.0003.
  8. Ross Duncan & Simon Perdrix (2009): Graph States and the necessity of Euler Decomposition. In: K. Ambos-Spies, B. Löwe & W. Merkle: Computability in Europe: Mathematical Theory and Computational Practice (CiE'09), Lecture Notes in Computer Science 5635. Springer, pp. 167–177, doi:10.1007/978-3-642-03073-4.
  9. Ross Duncan & Simon Perdrix (2010): Rewriting measurement-based quantum computations with generalised flow. In: S. Abramsky, C. Gavoille, C Kirchner, F. Meyer auf der Heide & P. G. Spirakis: Automata, Languages and Programming, 37th International Colloquium, ICALP 2010, Proceedings Part II, Lecture Notes in Computer Science 6199. Springer, pp. 285–296, doi:10.1007/978-3-642-14162-1_24.
  10. André Joyal & Ross Street (1991): The Geometry of Tensor Categories I. Advances in Mathematics 88, pp. 55–113, doi:10.1016/0001-8708(91)90003-P.
  11. Alex Lang & Bob Coecke (2011): Trichromatic Open Digraphs for Understanding Qubits. In: Proceedings of 8th Workshop on Quantum Physics and Logic (QPL 2011), Electronic Proceedings in Theoretical Computer Science 95, pp. 193–209, doi:10.4204/EPTCS.95.14.
  12. Mehdi Mhalla & Simon Perdrix (2013): Graph States, Pivot Minor, and Universality of (X,Z)-Measurements. IJUC 9(1-2), pp. 153–171.
  13. Maarten Van den Nest & Bart De Moor (2005): Edge-local equivalence of graphs. arXiv preprint math/0510246.
  14. Maarten. Van den Nest, Jeroen Dehaene & Bart De Moor (2004): Graphical description of the action of local Clifford transformations on graph states. Physical Review A 69, pp. 022316, doi:10.1103/PhysRevA.69.022316.
  15. Peter Selinger (2005): Dagger compact closed categories and completely positive maps. In: Proceedings of the 3rd International Workshop on Quantum Programming Languages.

Comments and questions to:
For website issues: