S. Abramsky & A. Brandenburger (2011):
The Sheaf-Theoretic Structure Of Non-Locality and Contextuality.
New Journal of Physics 13(2011),
pp. 113036,
doi:10.1088/1367-2630/13/11/113036.
S. Abramsky, C. Constantin & S. Ying (2014):
Almost all states are logically contextual.
In preparation.
S. Abramsky & L. Hardy (2012):
Logical Bell Inequalities.
Phys. Rev. A 85(062114),
doi:10.1103/physreva.85.062114.
A. Cabello (2012):
Bell's theorem without inequalities and without probabilities for two observers.
Phys. Rev. Lett. 86(1911),
doi:10.1103/physrevlett.86.1911.
R. H. Dicke (1954):
Coherence in spontaneous radiation processes.
Phys. Rev. 93(99),
doi:10.1103/physrev.93.99.
W. Dür, G. Vidal & J. I. Cirac (2000):
Three qubits can be entangled in two inequivalent ways.
Phys. Rev. A 62(062314),
doi:10.1103/physreva.62.062314.
D. M. Greenberger, M. A. Horne, A. Shimony & A. Zeilinger (1990):
Bell's theorem without inequalities.
Am. J. Phys. 58(1131).
L. Hardy (1993):
Nonlocality for two particles without inequalities for almost all entangled states.
Phys. Rev. Lett. 71(1665),
doi:10.1103/physrevlett.71.1665.
M. Hazewinkel (2001):
Encyclopaedia of Mathematics, Supplement III 13,
doi:10.1007/978-94-015-1279-4.
L. Lamata, J. León, D. Salgado & E. Solano (2006):
Inductive classification of multipartite entanglement under stochastic local operations and classical communication.
Phys. Rev. A 74(052336),
doi:10.1103/physreva.74.052336.
N. D. Mermin (1990):
Quantum mysteries revisited.
Am. J. Phys. 58(731).
S. Popescu & D. Rohrlich (1994):
Quantum nonlocality as an axiom.
Foundations of Physics 24,
pp. 379–385,
doi:10.1007/bf02058098.
Z. Wang & D. Markham (2012):
Nonlocality of symmetric states.
Phys. Rev. Lett. 108(210407),
doi:10.1103/physrevlett.108.210407.
J. Zimba & R. Penrose (1993):
On Bell non-locality without probabilities: more curious geometry.
Stud. Hist. Phil. Sci. A 24,
pp. 697–720,
doi:10.1016/0039-3681(93)90061-n.