1. S. Abramsky & B. Coecke (2004): A categorical semantics of quantum protocols. Proc. of LICS 2004, pp. 1–24, doi:10.1016/b978-0-444-52869-8.50010-4.
  2. S. Ambler (1991): First order linear logic and symmetric monoidal closed categories. PhD thesis, Edinburgh University.
  3. G. Battilotti & P. Zizzi (2004): The internal logic of Bell's states.
  4. J. Bell (2005): Set Theory: Boolean-valued models and independence proofs. Oxford Univ. Press, doi:10.1093/acprof:oso/9780198568520.001.0001.
  5. G. Dimov & W. Tholen (1989): A characterization of representable dualities. In: J. Adámek & S. MacLane: Categorical Topology and its Relations to Analysis, Algebra and Combinatorics. World Scientific Publishing, Teaneck, NJ, pp. 336-357.
  6. C. Faggian & G. Sambin (1998): From Basic Logic to Quantum Logics with Cut-Elimination. International Journal of Theoretical Physics 37, pp. 31–37, doi:10.1023/A:1026652903971.
  7. J. Frey (2011): A 2-Categorical Analysis of the Tripos-to-Topos Construction.
  8. N. Galatos, P. Jipsen, T. Kowalski & H. Ono (2007): Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier.
  9. C. Heunen & B. Jacobs (2010): Quantum logic in dagger kernel categories. Order 27, pp. 177–212, doi:10.1007/s11083-010-9145-5.
  10. M. Hyland, P. T. Johnstone & A. Pitts (1980): Tripos theory. Math. Proc. Cambridge Philos. Soc. 88, pp. 205–232, doi:10.1017/s0305004100057534.
  11. B. Jacobs (1999): Categorical Logic and Type Theory. Elsevier.
  12. B. Jacobs (2010): Convexity, Duality, and Effects. Proc. of 6th IFIP TCS, pp. 1–19, doi:10.1007/978-3-642-15240-5-1.
  13. B. Jacobs (2012): New directions in categorical logic.
  14. P. T. Johnstone (1982): Stone Spaces. Cambridge Univ. Press.
  15. P. T. Johnstone (2002): Sketches of an Elephant: A Topos Theory Compendium. Oxford Univ. Press, doi:10.1017/s1079898600003462.
  16. J. Lambek & P. J. Scott (1986): Introduction to Higher-Order Categorical Logic. Cambridge Univ. Press, doi:10.2307/2274784.
  17. F. W. Lawvere (1969): Adjointness in Foundations. Dialectica, pp. 281–296, doi:10.1111/j.1746-8361.1969.tb01194.x.
  18. F. W. Lawvere (1970): Equality in hyperdoctrines and comprehension scheme as an adjoint functor. Application of Categorical Algebra, pp. 1–14, doi:10.1090/pspum/017/0257175.
  19. Y. Maruyama (2010): Fundamental results for pointfree convex geometry. Ann. Pure Appl. Logic 161, pp. 1486–1501, doi:10.1016/j.apal.2010.05.002.
  20. Y. Maruyama (2013): From operational Chu duality to coalgebraic quantum symmetry. In Proc. of CALCO 2013, doi:10.1007/978-3-642-40206-7-17.
  21. Y. Maruyama (2013): Full Lambek hyperdoctrine: categorical semantics for first-order substructural logics. In Proc. of WoLLIC 2013, doi:10.1007/978-3-642-39992-3-19.
  22. Y. Maruyama: Categorical duality theory: domains, convexity, and the distribution monad. In preparation.
  23. M. Ozawa (2007): Transfer principle in quantum set theory. J. Symbolic Logic 72, pp. 625–648, doi:10.2178/jsl/1185803627.
  24. A. Pitts (2000): Categorical Logic. In: S. Abramsky, Dov. M. Gabbay & T. S. E. Maibaum: Handbook of Logic in Computer Science. Oxford Univ. Press.
  25. H.-E. Porst & W. Tholen (1991): Concrete dualities. Category Theory at Work, pp. 111–136.
  26. G. Takeuti (1981): Quantum set theory. Current Issues in Quantum Logic, pp. 303–322, doi:10.1007/978-1-4613-3228-2-19.
  27. M. L. J. van de Vel (1993): Theory of Convex Structures. North-Holland.
  28. P. Zizzi (2007): Basic logic and quantum entanglement. J. Phys.: Conf. Ser. 67(012045), doi:10.1088/1742-6596/67/1/012045.

Comments and questions to:
For website issues: