References

  1. S. Abramsky & B. Coecke (2004): A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 415–425, doi:10.48550/arXiv.quant-ph/0402130. arXiv:quant-ph/0402130.
  2. Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven & John M. Martinis (2019): Quantum Supremacy Using a Programmable Superconducting Processor. Nature 574(7779), pp. 505–510, doi:10.1038/s41586-019-1666-5.
  3. R Harald Baayen (2001): Word frequency distributions 18. Springer Science & Business Media, doi:10.1007/978-94-010-0844-0.
  4. Charles H. Baldwin, Karl Mayer, Natalie C. Brown, Ciarán Ryan-Anderson & David Hayes (2022): Re-examining the quantum volume test: Ideal distributions, compiler optimizations, confidence intervals, and scalable resource estimations. Quantum 6, pp. 707, doi:10.22331/q-2022-05-09-707.
  5. Afrad Basheer, A. Afham & Sandeep K. Goyal (2021): Quantum k-nearest neighbors algorithm, doi:10.48550/arXiv.2003.09187. ArXiv:2003.09187.
  6. Marcello Benedetti, Erika Lloyd, Stefan Sack & Mattia Fiorentini (2019): Parameterized quantum circuits as machine learning models. Quantum Science and Technology 4(4), pp. 043001, doi:10.1088/2058-9565/ab4eb5.
  7. Ethan Bernstein & Umesh Vazirani (1997): Quantum Complexity Theory. SIAM Journal on Computing 26(5), pp. 1411–1473, doi:10.1145/167088.167097.
  8. Adam Bouland & Tudor Giurgica-Tiron (2021): Efficient Universal Quantum Compilation: An Inverse-free Solovay-Kitaev Algorithm, doi:10.48550/arXiv.2112.02040. ArXiv:2112.02040.
  9. Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan & Christopher Olah (2023): Towards Monosemanticity: Decomposing Language Models With Dictionary Learning. Transformer Circuits Thread. https://transformer-circuits.pub/2023/monosemantic-features/index.html.
  10. H. Buhrman, R. Cleve, J. Watrous & R. De Wolf (2001): Quantum fingerprinting. Physical Review Letters 87(16), pp. 167902, doi:10.1103/PhysRevLett.87.167902.
  11. S. Clark, B. Coecke, E. Grefenstette, S. Pulman & M. Sadrzadeh (2014): A quantum teleportation inspired algorithm produces sentence meaning from word meaning and grammatical structure. Malaysian Journal of Mathematical Sciences 8, pp. 15–25, doi:10.48550/arXiv.1305.0556. ArXiv:1305.0556.
  12. B. Coecke (2019): The mathematics of text structure, doi:10.48550/arXiv.1904.03478. ArXiv:1904.03478.
  13. B. Coecke (2021): Compositionality as we see it, everywhere around us. arXiv preprint arXiv:2110.05327, doi:10.48550/arXiv.2110.05327.
  14. B. Coecke, G. de Felice, K. Meichanetzidis & A. Toumi (2020): Foundations for Near-Term Quantum Natural Language Processing, doi:10.48550/arXiv.2012.03755. ArXiv preprint arXiv:2012.03755.
  15. B. Coecke & A. Kissinger (2017): Picturing Quantum Processes. A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, doi:10.1017/9781316219317.
  16. B. Coecke, M. Sadrzadeh & S. Clark (2010): Mathematical foundations for a compositional distributional model of meaning. In: J. van Benthem, M. Moortgat & W. Buszkowski: A Festschrift for Jim Lambek, Linguistic Analysis 36, pp. 345–384, doi:10.48550/arXiv.1003.4394. Arxiv:1003.4394.
  17. Bob Coecke, Fabrizio Genovese, Stefano Gogioso, Dan Marsden & Robin Piedeleu (2018): Uniqueness of Composition in Quantum Theory and Linguistics. Electronic Proceedings in Theoretical Computer Science 266, pp. 249–257, doi:10.4204/eptcs.266.17.
  18. Matthew DeCross, Reza Haghshenas, Minzhao Liu, Yuri Alexeev, Charles H. Baldwin, John P. Bartolotta, Matthew Bohn, Eli Chertkov, Jonhas Colina, Davide DelVento, Joan M. Dreiling, Cameron Foltz, John P. Gaebler, Thomas M. Gatterman, Christopher N. Gilbreth, Johnnie Gray, Dan Gresh, Nathan Hewitt, Ross B. Hutson, Jacob Johansen, Dominic Lucchetti, Danylo Lykov, Ivaylo S. Madjarov, Karl Mayer, Michael Mills, Pradeep Niroula, Enrico Rinaldi, Peter E. Siegfried, Bruce G. Tiemann, Curtis Volin, James Walker, Ruslan Shaydulin, Marco Pistoia, Steven. A. Moses, David Hayes, Brian Neyenhuis, Russell P. Stutz & Michael Foss-Feig (2024): The computational power of random quantum circuits in arbitrary geometries, doi:10.48550/arXiv.2406.02501. ArXiv:2406.02501.
  19. Tiffany Duneau (2021): Solving Logical Puzzles in DisCoCirc. Journal of Cognitive Science 22(3), pp. 355 – 389. Available at https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125423576&partnerID=40&md5=4c6db945056372334795ff799ea0f56f. Type: Article.
  20. Tiffany Duneau, Saskia Bruhn, Gabriel Matos, Tuomas Laakkonen, Katerina Saiti, Anna Pearson, Konstantinos Meichanetzidis & Bob Coecke: Scalable and interpretable quantum natural language processing: an implementation on trapped ions. In preparation..
  21. Vedran Dunjko & Hans J Briegel (2018): Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Reports on Progress in Physics 81(7), doi:10.1088/1361-6633/aab406. Available at https://dx.doi.org/10.1088/1361-6633/aab406.
  22. Christoph Durr & Peter Hoyer (1999): A Quantum Algorithm for Finding the Minimum, doi:10.48550/arXiv.quant-ph/9607014. ArXiv:quant-ph/9607014.
  23. V. Giovannetti, S. Lloyd & L. Maccone (2008): Quantum random access memory. Physical review letters 100(16), pp. 160501, doi:10.1103/PhysRevLett.100.160501.
  24. E. Grefenstette & M. Sadrzadeh (2011): Experimental Support for a Categorical Compositional Distributional Model of Meaning. In: The 2014 Conference on Empirical Methods on Natural Language Processing., pp. 1394–1404, doi:10.48550/arXiv.1106.4058. ArXiv:1106.4058.
  25. Carys Harvey, Richie Yeung & Konstantinos Meichanetzidis (2023): Sequence Processing with Quantum Tensor Networks, doi:10.48550/arXiv.2308.07865. ArXiv:2308.07865.
  26. William Huggins, Piyush Patil, Bradley Mitchell, K Birgitta Whaley & E Miles Stoudenmire (2019): Towards quantum machine learning with tensor networks. Quantum Science and Technology 4(2), pp. 024001, doi:10.1088/2058-9565/aaea94.
  27. Richard Jozsa & Akimasa Miyake (2008): Matchgates and classical simulation of quantum circuits. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464(2100), pp. 3089–3106, doi:10.1098/rspa.2008.0189.
  28. D. Kartsaklis, I. Fan, R. Yeung, A. Pearson, R. Lorenz, A. Toumi, G. de Felice, K. Meichanetzidis, S. Clark & B. Coecke (2021): lambeq: An Efficient High-Level Python Library for Quantum NLP. arXiv preprint arXiv:2110.04236, doi:10.48550/arXiv.2110.04236.
  29. D. Kartsaklis & M. Sadrzadeh (2013): Prior disambiguation of word tensors for constructing Sentence vectors.. In: The 2013 Conference on Empirical Methods on Natural Language Processing.. ACL, pp. 1590–1601. https://aclanthology.org/D13-1166/.
  30. J. Lambek (1958): The mathematics of sentence structure. American Mathematics Monthly 65, doi:10.1080/00029890.1958.11989160.
  31. J. Lambek (1999): Type grammar revisited. Logical Aspects of Computational Linguistics 1582, doi:10.1007/3-540-48975-4_1.
  32. J. Lambek (2008): From Word to Sentence. Polimetrica, Milan. ISBN: 8876991174. https://www.math.mcgill.ca/barr/lambek/pdffiles/2008lambek.pdf.
  33. Yeong-Cherng Liang, Yu-Hao Yeh, Paulo E M F Mendonça, Run Yan Teh, Margaret D Reid & Peter D Drummond (2019): Quantum fidelity measures for mixed states. Reports on Progress in Physics 82(7), pp. 076001, doi:10.1088/1361-6633/ab1ca4.
  34. Henry Lin & Max Tegmark (2017): Critical Behavior in Physics and Probabilistic Formal Languages. Entropy 19(7), pp. 299, doi:10.3390/e19070299.
  35. Jonathon Liu, Razin A. Shaikh, Benjamin Rodatz, Richie Yeung & Bob Coecke (2023): A Pipeline For Discourse Circuits From CCG, doi:10.48550/arXiv.2311.17892. ArXiv:2311.17892.
  36. Ziming Liu, Eric Gan & Max Tegmark (2023): Seeing is Believing: Brain-Inspired Modular Training for Mechanistic Interpretability, doi:10.48550/arXiv.2305.08746. ArXiv:2305.08746.
  37. Robin Lorenz, Anna Pearson, Konstantinos Meichanetzidis, Dimitri Kartsaklis & Bob Coecke (2023): QNLP in Practice: Running Compositional Models of Meaning on a Quantum Computer. Journal of Artificial Intelligence Research 76, pp. 1305–1342, doi:10.1613/jair.1.14329.
  38. Gabriel Matos, Chris N. Self, Zlatko Papić, Konstantinos Meichanetzidis & Henrik Dreyer (2023): Characterization of variational quantum algorithms using free fermions. Quantum 7, pp. 966, doi:10.22331/q-2023-03-30-966.
  39. Konstantinos Meichanetzidis, Stefano Gogioso, Giovanni de Felice, Nicolò Chiappori, Alexis Toumi & Bob Coecke (2021): Quantum Natural Language Processing on Near-Term Quantum Computers. Electronic Proceedings in Theoretical Computer Science 340, pp. 213–229, doi:10.4204/eptcs.340.11.
  40. Konstantinos Meichanetzidis, Alexis Toumi, Giovanni de Felice & Bob Coecke (2023): Grammar-aware sentence classification on quantum computers. Quantum Machine Intelligence 5(1), doi:10.1007/s42484-023-00097-1.
  41. Kosuke Mitarai, Masahiro Kitagawa & Keisuke Fujii (2019): Quantum analog-digital conversion. Phys. Rev. A 99, pp. 012301, doi:10.1103/PhysRevA.99.012301. Available at https://link.aps.org/doi/10.1103/PhysRevA.99.012301.
  42. Michael Ragone, Bojko N. Bakalov, Frédéric Sauvage, Alexander F. Kemper, Carlos Ortiz Marrero, Martin Larocca & M. Cerezo (2023): A Unified Theory of Barren Plateaus for Deep Parametrized Quantum Circuits, doi:10.48550/arXiv.2309.09342. ArXiv:2309.09342.
  43. Benjamin Rodatz, Razin A. Shaikh & Lia Yeh (2021): Conversational Negation using Worldly Context in Compositional Distributional Semantics, doi:10.48550/arXiv.2105.05748. ArXiv:2105.05748.
  44. M. Sadrzadeh, S. Clark & B. Coecke (2013): The Frobenius anatomy of word meanings I: subject and object relative pronouns. Journal of Logic and Computation 23, pp. 1293–1317, doi:10.1093/logcom/ext044. ArXiv:1404.5278.
  45. Yukie Sano, Hideki Takayasu & Misako Takayasu (2012): Zipf’s Law and Heaps’ Law Can Predict the Size of Potential Words. Progress of Theoretical Physics Supplement 194, pp. 202–209, doi:10.1143/ptps.194.202.
  46. Maria Schuld, Ilya Sinayskiy & Francesco Petruccione (2014): An introduction to quantum machine learning. Contemporary Physics 56(2), pp. 172–185, doi:10.1080/00107514.2014.964942.
  47. Sukin Sim, Peter D. Johnson & Alán Aspuru‐Guzik (2019): Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum‐Classical Algorithms. Advanced Quantum Technologies 2(12), doi:10.1002/qute.201900070.
  48. Andrei Tomut, Saeed S. Jahromi, Sukhbinder Singh, Faysal Ishtiaq, Cesar Muñoz, Prabdeep Singh Bajaj, Ali Elborady, Gianni del Bimbo, Mehrazin Alizadeh, David Montero, Pablo Martin-Ramiro, Muhammad Ibrahim, Oussama Tahiri Alaoui, John Malcolm, Samuel Mugel & Roman Orus (2024): CompactifAI: Extreme Compression of Large Language Models using Quantum-Inspired Tensor Networks, doi:10.48550/arXiv.2401.14109. ArXiv:2401.14109.
  49. V. Wang-Mascianica, J. Liu & B. Coecke (2023): Distilling Text into Circuits. arXiv preprint arXiv:2301.10595, doi:10.48550/arXiv.2301.10595.
  50. Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M. Rush, Bart van Merriënboer, Armand Joulin & Tomas Mikolov (2015): Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks, doi:10.48550/arXiv.1502.05698. ArXiv:1502.05698.
  51. Dominic Widdows, Willie Aboumrad, Dohun Kim, Sayonee Ray & Jonathan Mei (2024): Natural Language, AI, and Quantum Computing in 2024: Research Ingredients and Directions in QNLP. arXiv preprint arXiv:2403.19758, doi:10.48550/arXiv.2403.19758.
  52. Dominic Widdows, Aaranya Alexander, Daiwei Zhu, Chase Zimmerman & Arunava Majumder (2024): Near-term advances in quantum natural language processing. Annals of Mathematics and Artificial Intelligence, doi:10.1007/s10472-024-09940-y.
  53. N. Wiebe, A. Kapoor & K. M. Svore (2015): Quantum nearest-neighbour algorithms for machine learning. Quantum Information and Computation 15, pp. 318–358, doi:10.26421/QIC15.3-4-7.
  54. William Zeng & Bob Coecke (2016): Quantum Algorithms for Compositional Natural Language Processing. Electronic Proceedings in Theoretical Computer Science 221, pp. 67–75, doi:10.4204/eptcs.221.8.
  55. Jun Zhang, Jiri Vala, Shankar Sastry & K. Birgitta Whaley (2003): Exact Two-Qubit Universal Quantum Circuit. Physical Review Letters 91(2), doi:10.1103/physrevlett.91.027903.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org