Dimitris Achlioptas, Assaf Naor & Yuval Peres (2005):
Rigorous Location of Phase Transitions in Hard Optimization Problems.
Nature 435(7043),
pp. 759–764,
doi:10.1038/nature03602.
Miriam Backens (2014):
The ZX-calculus is complete for stabilizer quantum mechanics.
New Journal of Physics 16(9),
pp. 093021,
doi:10.1088/1367-2630/16/9/093021.
Miriam Backens & Aleks Kissinger (2019):
ZH: A Complete Graphical Calculus for Quantum Computations Involving Classical Non-linearity.
Electronic Proceedings in Theoretical Computer Science 287,
pp. 23–42,
doi:10.4204/EPTCS.287.2.
ArXiv:1805.02175.
Miriam Backens, Aleks Kissinger, Hector Miller-Bakewell, John van de Wetering & Sal Wolffs (2021):
Completeness of the ZH-calculus,
doi:10.48550/arXiv.2103.06610.
ArXiv:2103.06610.
Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, Leo Lobski & John van de Wetering (2021):
There and back again: A circuit extraction tale.
Quantum 5,
pp. 421,
doi:10.22331/q-2021-03-25-421.
Niel de Beaudrap, Xiaoning Bian & Quanlong Wang (2020):
Techniques to Reduce π/4-Parity-Phase Circuits, Motivated by the ZX Calculus.
In: Bob Coecke & Matthew Leifer: Proceedings 16th International Conference on Quantum Physics and Logic, Chapman University, Orange, CA, USA., 10-14 June 2019,
Electronic Proceedings in Theoretical Computer Science 318.
Open Publishing Association,
pp. 131–149,
doi:10.4204/EPTCS.318.9.
A. Biere, M. Heule & H. van Maaren (2009):
Handbook of Satisfiability.
IOS Press, Incorporated,
doi:10.3233/FAIA336.
E. Birnbaum & E. L. Lozinskii (1999):
The Good Old Davis-Putnam Procedure Helps Counting Models.
Journal of Artificial Intelligence Research 10,
pp. 457–477,
doi:10.1613/jair.601.
ArXiv:1106.0218.
Guillaume Boisseau & Robin Piedeleu (2022):
Graphical Piecewise-Linear Algebra.
In: Patricia Bouyer & Lutz Schröder: Foundations of Software Science and Computation Structures.
Springer International Publishing,
Cham,
pp. 101–119,
doi:10.1007/978-3-030-99253-8_6.
Filippo Bonchi, Joshua Holland, Robin Piedeleu, PawełSobociński & Fabio Zanasi (2019):
Diagrammatic Algebra: From Linear to Concurrent Systems.
Proc. ACM Program. Lang. 3(POPL),
doi:10.1145/3290338.
Filippo Bonchi, Robin Piedeleu, Pawel Sobociński & Fabio Zanasi (2019):
Graphical Affine Algebra.
In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pp. 1–12,
doi:10.1109/LICS.2019.8785877.
Filippo Bonchi, PawełSobociński & Fabio Zanasi (2014):
A Categorical Semantics of Signal Flow Graphs.
In: Paolo Baldan & Daniele Gorla: CONCUR 2014 Concurrency Theory.
Springer Berlin Heidelberg,
Berlin, Heidelberg,
pp. 435–450,
doi:10.1007/978-3-662-44584-6_30.
Filippo Bonchi, PawełSobociński & Fabio Zanasi (2017):
Interacting Hopf Algebras.
Journal of Pure and Applied Algebra 221(1),
pp. 144–184,
doi:10.1016/j.jpaa.2016.06.002.
Enrique Cervero Martín, Kirill Plekhanov & Michael Lubasch (2022):
Barren plateaus in quantum tensor network optimization,
doi:10.48550/arXiv.2209.00292.
ArXiv:2209.00292.
Bob Coecke & Ross Duncan (2008):
Interacting quantum observables.
In: Proceedings of the 37th International Colloquium on Automata, Languages and Programming (ICALP),
Lecture Notes in Computer Science,
doi:10.1007/978-3-540-70583-3_25.
Bob Coecke & Ross Duncan (2011):
Interacting Quantum Observables: Categorical Algebra and Diagrammatics.
New Journal of Physics 13(4),
pp. 043016,
doi:10.1088/1367-2630/13/4/043016.
ArXiv:0906.4725.
Carsten Damm, Markus Holzer & Pierre McKenzie (2002):
The Complexity of Tensor Calculus.
Computational Complexity 11(1/2),
pp. 54–89,
doi:10.1007/s00037-000-0170-4.
Martin Davis, George Logemann & Donald Loveland (1962):
A Machine Program for Theorem-Proving.
Communications of the ACM 5(7),
pp. 394–397,
doi:10.1145/368273.368557.
Niel de Beaudrap, Aleks Kissinger & Konstantinos Meichanetzidis (2021):
Tensor Network Rewriting Strategies for Satisfiability and Counting.
Electronic Proceedings in Theoretical Computer Science 340,
pp. 46–59,
doi:10.4204/EPTCS.340.3.
ArXiv:2004.06455.
Olivier Dubois (1991):
Counting the Number of Solutions for Instances of Satisfiability.
Theoretical Computer Science 81(1),
pp. 49–64,
doi:10.1016/0304-3975(91)90315-S.
Ross Duncan, Aleks Kissinger, Simon Perdrix & John van de Wetering (2020):
Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus.
Quantum 4,
pp. 279,
doi:10.22331/q-2020-06-04-279.
Richard D. P. East, Pierre Martin-Dussaud & John van de Wetering (2021):
Spin-networks in the ZX-calculus,
doi:10.48550/arXiv.2111.03114.
ArXiv:2111.03114.
Stephen A Fenner, Lance J Fortnow & Stuart A Kurtz (1994):
Gap-Definable Counting Classes.
Journal of Computer and System Sciences 48(1),
pp. 116–148,
doi:10.1016/S0022-0000(05)80024-8.
Johannes K. Fichte, Markus Hecher & Florim Hamiti (2020):
The Model Counting Competition 2020,
doi:10.48550/arXiv.2012.01323.
ArXiv:2012.01323.
Martin Fürer & Shiva Prasad Kasiviswanathan (2007):
Algorithms for Counting 2-Sat Solutions and Colorings with Applications.
In: Ming-Yang Kao & Xiang-Yang Li: Algorithmic Aspects in Information and Management,
Lecture Notes in Computer Science.
Springer,
Berlin, Heidelberg,
pp. 47–57,
doi:10.1007/978-3-540-72870-2_5.
Craig Gidney & Austin G. Fowler (2019):
Efficient magic state factories with a catalyzed |CCZto 2|Ttransformation.
Quantum 3,
pp. 135,
doi:10.22331/q-2019-04-30-135.
Tao Gu, Robin Piedeleu & Fabio Zanasi (2022):
A Complete Diagrammatic Calculus for Boolean Satisfiability,
doi:10.48550/arXiv.2211.12629.
ArXiv:2211.12629.
Amar Hadzihasanovic (2015):
A diagrammatic axiomatisation for qubit entanglement.
In: 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.
IEEE,
pp. 573–584,
doi:10.1109/LICS.2015.59.
Amar Hadzihasanovic, Kang Feng Ng & Quanlong Wang (2018):
Two Complete Axiomatisations of Pure-state Qubit Quantum Computing.
In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS '18.
ACM,
New York, NY, USA,
pp. 502–511,
doi:10.1145/3209108.3209128.
Michael Hanks, Marta P. Estarellas, William J. Munro & Kae Nemoto (2020):
Effective Compression of Quantum Braided Circuits Aided by ZX-Calculus.
Physical Review X 10,
pp. 041030,
doi:10.1103/PhysRevX.10.041030.
Emmanuel Jeandel, Simon Perdrix & Renaud Vilmart (2018):
A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics.
In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS '18.
ACM,
New York, NY, USA,
pp. 559–568,
doi:10.1145/3209108.3209131.
Aleks Kissinger & John van de Wetering (2020):
Reducing the number of non-Clifford gates in quantum circuits.
Physical Review A 102,
pp. 022406,
doi:10.1103/PhysRevA.102.022406.
Aleks Kissinger & John van de Wetering (2022):
Simulating quantum circuits with ZX-calculus reduced stabiliser decompositions.
Quantum Science and Technology 7(4),
pp. 044001,
doi:10.1088/2058-9565/ac5d20.
Aleks Kissinger, John van de Wetering & Renaud Vilmart (2022):
Classical Simulation of Quantum Circuits with Partial and Graphical Stabiliser Decompositions.
In: François Le Gall & Tomoyuki Morimae: 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022),
Leibniz International Proceedings in Informatics (LIPIcs) 232.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany,
pp. 5:1–5:13,
doi:10.4230/LIPIcs.TQC.2022.5.
Konstantin Kutzkov (2007):
New Upper Bound for the #3-SAT Problem.
Information Processing Letters 105(1),
pp. 1–5,
doi:10.1016/j.ipl.2007.06.017.
Tuomas Laakkonen, Konstantinos Meichanetzidis & John van de Wetering (2023):
Picturing Counting Reductions with the ZH-Calculus.
Electronic Proceedings in Theoretical Computer Science 384,
pp. 89–113,
doi:10.4204/eptcs.384.6.
Kang Feng Ng & Quanlong Wang (2018):
Completeness of the ZX-calculus for Pure Qubit Clifford+T Quantum Mechanics,
doi:10.48550/arXiv.1801.07993.
ArXiv:1801.07993.
Román Orús (2014):
A practical introduction to tensor networks: Matrix product states and projected entangled pair states.
Annals of Physics 349,
pp. 117–158,
doi:10.1016/j.aop.2014.06.013.
Junqiang Peng & Mingyu Xiao (2021):
Further Improvements for SAT in Terms of Formula Length,
doi:10.48550/arXiv.2105.06131.
ArXiv:2105.06131.
Robin Piedeleu & Fabio Zanasi (2021):
A String Diagrammatic Axiomatisation of Finite-State Automata.
In: Stefan Kiefer & Christine Tasson: Foundations of Software Science and Computation Structures.
Springer International Publishing,
Cham,
pp. 469–489,
doi:10.1007/978-3-030-71995-1_24.
Tian Sang, Fahiem Bacchus, Paul Beame, Henry A. Kautz & Toniann Pitassi (2004):
Combining Component Caching and Clause Learning for Effective Model Counting.
In: SAT 2004 - The Seventh International Conference on Theory and Applications of Satisfiability Testing, 10-13 May 2004, Vancouver, BC, Canada, Online Proceedings.
Marc Thurley (2006):
sharpSAT Counting Models with Advanced Component Caching and Implicit BCP.
In: Armin Biere & Carla P. Gomes: Theory and Applications of Satisfiability Testing - SAT 2006,
Lecture Notes in Computer Science.
Springer,
Berlin, Heidelberg,
pp. 424–429,
doi:10.1007/11814948_38.
Seinosuke Toda (1991):
PP Is as Hard as the Polynomial-Time Hierarchy.
SIAM Journal on Computing 20(5),
pp. 865–877,
doi:10.1137/0220053.
Alex Townsend-Teague & Konstantinos Meichanetzidis (2021):
Classifying Complexity with the ZX-Calculus: Jones Polynomials and Potts Partition Functions,
doi:10.48550/arXiv.2103.06914.
ArXiv:2103.06914.
Leslie G. Valiant (1979):
The Complexity of Enumeration and Reliability Problems.
SIAM Journal on Computing 8(3),
pp. 410–421,
doi:10.1137/0208032.
Renaud Vilmart (2019):
A Near-Minimal Axiomatisation of ZX-Calculus for Pure Qubit Quantum Mechanics.
In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pp. 1–10,
doi:10.1109/LICS.2019.8785765.
Renaud Vilmart (2019):
A ZX-Calculus with Triangles for Toffoli-Hadamard, Clifford+T, and Beyond.
Electronic Proceedings in Theoretical Computer Science 287,
pp. 313–344,
doi:10.4204/EPTCS.287.18.
ArXiv:1804.03084.
Renaud Vilmart (2021):
Quantum Multiple-Valued Decision Diagrams in Graphical Calculi.
In: Filippo Bonchi & Simon J. Puglisi: 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021),
Leibniz International Proceedings in Informatics (LIPIcs) 202.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany,
pp. 89:1–89:15,
doi:10.4230/LIPIcs.MFCS.2021.89.
Renaud Vilmart (2021):
The Structure of Sum-over-Paths, Its Consequences, and Completeness for Clifford.
In: Stefan Kiefer & Christine Tasson: Foundations of Software Science and Computation Structures.
Springer International Publishing,
Cham,
pp. 531–550,
doi:10.1007/978-3-030-71995-1_27.
Magnus Wahlström (2008):
A Tighter Bound for Counting Max-Weight Solutions to 2SAT Instances.
In: Martin Grohe & Rolf Niedermeier: Parameterized and Exact Computation,
Lecture Notes in Computer Science.
Springer,
Berlin, Heidelberg,
pp. 202–213,
doi:10.1007/978-3-540-79723-4_19.
Honglin Wang & Wenxiang Gu (2013):
The Worst Case Minimized Upper Bound in #2-SAT.
In: Wei Lu, Guoqiang Cai, Weibin Liu & Weiwei Xing: Proceedings of the 2012 International Conference on Information Technology and Software Engineering,
Lecture Notes in Electrical Engineering.
Springer,
Berlin, Heidelberg,
pp. 675–682,
doi:10.1007/978-3-642-34522-7_72.
Quanlong Wang (2021):
An Algebraic Axiomatisation of ZX-calculus.
In: Benoît Valiron, Shane Mansfield, Pablo Arrighi & Prakash Panangaden: Proceedings 17th International Conference on Quantum Physics and Logic, Paris, France, June 2 - 6, 2020,
Electronic Proceedings in Theoretical Computer Science 340.
Open Publishing Association,
pp. 303–332,
doi:10.4204/EPTCS.340.16.
Ryan Williams (2004):
On Computing K-CNF Formula Properties.
In: Enrico Giunchiglia & Armando Tacchella: Theory and Applications of Satisfiability Testing,
Lecture Notes in Computer Science.
Springer,
Berlin, Heidelberg,
pp. 330–340,
doi:10.1007/978-3-540-24605-3_25.
Masaki Yamamoto (2005):
An Improved O(1.234^m)-Time Deterministic Algorithm for SAT.
In: Xiaotie Deng & Ding-Zhu Du: Algorithms and Computation,
Lecture Notes in Computer Science.
Springer,
Berlin, Heidelberg,
pp. 644–653,
doi:10.1007/11602613_65.
Fabio Zanasi (2015):
Interacting Hopf Algebras: the theory of linear systems.
Ecole Normale Superieure de Lyon,
doi:10.48550/arXiv.1805.03032.
Available at https://arxiv.org/abs/1805.03032.
Junping Zhou, Minghao Yin & Chunguang Zhou (2010):
New Worst-Case Upper Bound for #2-SAT and #3-SAT with the Number of Clauses as the Parameter.
In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI'10.
AAAI Press,
Atlanta, Georgia,
pp. 217–222,
doi:10.48550/arXiv.1006.1537.