Jeremy C. Adcock, Sam Morley-Short, Axel Dahlberg & Joshua W. Silverstone (2020):
Mapping Graph State Orbits under Local Complementation.
Quantum 4,
pp. 305,
doi:10.22331/q-2020-08-07-305.
ArXiv:1910.03969.
Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, Leo Lobski & John van de Wetering (2021):
There and Back Again: A Circuit Extraction Tale.
Quantum 5,
pp. 421,
doi:10.22331/q-2021-03-25-421.
ArXiv:2003.01664.
Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray Perlner, Daniel Smith-Tone, Jean-Pierre Tillich & Javier Verbel (2020):
Improvements of Algebraic Attacks for Solving the Rank Decoding and MinRank Problems.
In: Shiho Moriai & Huaxiong Wang: Advances in Cryptology – ASIACRYPT 2020,
Lecture Notes in Computer Science.
Springer International Publishing,
Cham,
pp. 507–536,
doi:10.1007/978-3-030-64837-4_17.
Anne Broadbent, Joseph Fitzsimons & Elham Kashefi (2009):
Universal Blind Quantum Computation.
In: 2009 50th Annual IEEE Symposium on Foundations of Computer Science,
pp. 517–526,
doi:10.1109/FOCS.2009.36.
Daniel E. Browne, Elham Kashefi, Mehdi Mhalla & Simon Perdrix (2007):
Generalized Flow and Determinism in Measurement-Based Quantum Computation.
New Journal of Physics 9(8),
pp. 250,
doi:10.1088/1367-2630/9/8/250.
Jonathan F. Buss, Gudmund S. Frandsen & Jeffrey O. Shallit (1999):
The Computational Complexity of Some Problems of Linear Algebra.
Journal of Computer and System Sciences 58(3),
pp. 572–596,
doi:10.1006/jcss.1998.1608.
Bob Coecke & Ross Duncan (2011):
Interacting Quantum Observables: Categorical Algebra and Diagrammatics.
New Journal of Physics 13(4),
pp. 043016,
doi:10.1088/1367-2630/13/4/043016.
ArXiv:0906.4725.
Vincent Danos & Elham Kashefi (2006):
Determinism in the One-Way Model.
Physical Review A 74(5),
pp. 052310,
doi:10.1103/PhysRevA.74.052310.
Niel de Beaudrap (2008):
Finding Flows in the One-Way Measurement Model.
Physical Review A 77(2),
pp. 022328,
doi:10.1103/PhysRevA.77.022328.
Niel de Beaudrap, Aleks Kissinger & John van de Wetering (2022):
Circuit Extraction for ZX-Diagrams Can Be #P-Hard.
In: 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022),
LIPIcs 229,
pp. 119:1–119:19,
doi:10.4230/LIPIcs.ICALP.2022.119.
Richard A. Demillo & Richard J. Lipton (1978):
A Probabilistic Remark on Algebraic Program Testing.
Information Processing Letters 7(4),
pp. 193–195,
doi:10.1016/0020-0190(78)90067-4.
Ross Duncan, Aleks Kissinger, Simon Perdrix & John van de Wetering (2020):
Graph-Theoretic Simplification of Quantum Circuits with the ZX-calculus.
Quantum 4,
pp. 279,
doi:10.22331/q-2020-06-04-279.
ArXiv:1902.03178.
Sergey B. Gashkov & Igor S. Sergeev (2013):
Complexity of Computation in Finite Fields.
Journal of Mathematical Sciences 191(5),
pp. 661–685,
doi:10.1007/s10958-013-1350-5.
Nicholas J. A. Harvey, David R. Karger & Sergey Yekhanin (2006):
The Complexity of Matrix Completion.
In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm - SODA '06.
ACM Press,
Miami, Florida,
pp. 1103–1111,
doi:10.1145/1109557.1109679.
Matt Hostetter (2020):
Galois: A performant NumPy extension for Galois fields.
https://github.com/mhostetter/galois.
(accessed February 2024).
Gábor Ivanyos, Marek Karpinski & Nitin Saxena (2010):
Deterministic Polynomial Time Algorithms for Matrix Completion Problems.
SIAM Journal on Computing,
doi:10.1137/090781231.
Frank Luebeck (2021):
Conway Polynomials for Finite Fields.
https://www.math.rwth-aachen.de/~ Frank.Luebeck/data/ConwayPol/index.html.
(accessed February 2024).
Meena Mahajan & Jayalal M. N. Sarma (2010):
On the Complexity of Matrix Rank and Rigidity.
Theory of Computing Systems 46(1),
pp. 9–26,
doi:10.1007/s00224-008-9136-8.
Atul Mantri, Tommaso F. Demarie & Joseph F. Fitzsimons (2017):
Universality of Quantum Computation with Cluster States and (X, Y)-Plane Measurements.
Scientific Reports 7(1),
pp. 42861,
doi:10.1038/srep42861.
Damian Markham & Elham Kashefi (2014):
Entanglement, Flow and Classical Simulatability in Measurement Based Quantum Computation.
In: Franck van Breugel, Elham Kashefi, Catuscia Palamidessi & Jan Rutten: Horizons of the Mind. A Tribute to Prakash Panangaden: Essays Dedicated to Prakash Panangaden on the Occasion of His 60th Birthday,
Lecture Notes in Computer Science.
Springer International Publishing,
Cham,
pp. 427–453,
doi:10.1007/978-3-319-06880-0_22.
Tommy McElvanney & Miriam Backens (2023):
Complete Flow-Preserving Rewrite Rules for MBQC Patterns with Pauli Measurements.
Electronic Proceedings in Theoretical Computer Science 394,
pp. 66–82,
doi:10.4204/EPTCS.394.5.
Tommy McElvanney & Miriam Backens (2023):
Flow-Preserving ZX-calculus Rewrite Rules for Optimisation and Obfuscation.
Electronic Proceedings in Theoretical Computer Science 384,
pp. 203–219,
doi:10.4204/EPTCS.384.12.
ArXiv:2304.08166.
Mehdi Mhalla, Mio Murao, Simon Perdrix, Masato Someya & Peter S. Turner (2014):
Which Graph States Are Useful for Quantum Information Processing?.
In: Dave Bacon, Miguel Martin-Delgado & Martin Roetteler: Theory of Quantum Computation, Communication, and Cryptography.
Springer Berlin Heidelberg,
Berlin, Heidelberg,
pp. 174–187,
doi:10.1007/978-3-642-54429-3_12.
Mehdi Mhalla & Simon Perdrix (2008):
Finding Optimal Flows Efficiently.
In: Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir & Igor Walukiewicz: Automata, Languages and Programming,
Lecture Notes in Computer Science.
Springer,
Berlin, Heidelberg,
pp. 857–868,
doi:10.1007/978-3-540-70575-8_70.
Mehdi Mhalla, Simon Perdrix & Luc Sanselme (2022):
Characterising Determinism in MBQCs Involving Pauli Measurements,
doi:10.48550/arXiv.2207.09368.
ArXiv:2207.09368.
Piotr Mitosek & Miriam Backens:
Unpublished Upcoming Paper.
Øystein Ore (1921):
Über Höhere Kongruenzen.
Norsk Matematisk Forenings Skrifter.
Grøndahl.
Robert Raussendorf & Hans J. Briegel (2001):
A One-Way Quantum Computer.
Physical Review Letters 86(22),
pp. 5188–5191,
doi:10.1103/PhysRevLett.86.5188.
Robert Raussendorf, Daniel E. Browne & Hans J. Briegel (2002):
The One-Way Quantum Computer - a Non-Network Model of Quantum Computation.
Journal of Modern Optics 49(8),
pp. 1299–1306,
doi:10.1080/09500340110107487.
ArXiv:quant-ph/0108118.
Robert Raussendorf, Daniel E. Browne & Hans J. Briegel (2003):
Measurement-Based Quantum Computation on Cluster States.
Physical Review A 68(2),
pp. 022312,
doi:10.1103/PhysRevA.68.022312.
Jacob T. Schwartz (1980):
Fast Probabilistic Algorithms for Verification of Polynomial Identities.
Journal of the ACM 27(4),
pp. 701–717,
doi:10.1145/322217.322225.
Will Simmons (2021):
Relating Measurement Patterns to Circuits via Pauli Flow.
Electronic Proceedings in Theoretical Computer Science 343,
pp. 50–101,
doi:10.4204/EPTCS.343.4.
ArXiv:2109.05654.
Korbinian Staudacher, Tobias Guggemos, Sophia Grundner-Culemann & Wolfgang Gehrke (2023):
Reducing 2-QuBit Gate Count for ZX-Calculus Based Quantum Circuit Optimization.
EPTCS 394,
pp. 29–45,
doi:10.4204/EPTCS.394.3.
Yuki Takeuchi, Tomoyuki Morimae & Masahito Hayashi (2019):
Quantum Computational Universality of Hypergraph States with Pauli-X and Z Basis Measurements.
Scientific Reports 9(1),
pp. 13585,
doi:10.1038/s41598-019-49968-3.
Richard Zippel (1979):
Probabilistic Algorithms for Sparse Polynomials.
In: Edward W. Ng: Symbolic and Algebraic Computation,
Lecture Notes in Computer Science.
Springer,
Berlin, Heidelberg,
pp. 216–226,
doi:10.1007/3-540-09519-5_73.