Miriam Backens, Simon Perdrix & Quanlong Wang (2017):
A Simplified Stabilizer ZX-calculus.
Electronic Proceedings in Theoretical Computer Science 236,
pp. 1–20,
doi:10.4204/eptcs.236.1.
Niel de Beaudrap, Xiaoning Bian & Quanlong Wang (2020):
Fast and Effective Techniques for T-Count Reduction via Spider Nest Identities.
In: Steven T. Flammia: 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020),
Leibniz International Proceedings in Informatics (LIPIcs) 158.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
Dagstuhl, Germany,
pp. 11:1–11:23,
doi:10.4230/LIPIcs.TQC.2020.11.
Niel de Beaudrap, Aleks Kissinger & Konstantinos Meichanetzidis (2021):
Tensor Network Rewriting Strategies for Satisfiability and Counting.
Electronic Proceedings in Theoretical Computer Science 340,
pp. 46–59,
doi:10.4204/eptcs.340.3.
Lucas Berent, Lukas Burgholzer & Robert Wille (2022):
Towards a SAT Encoding for Quantum Circuits: A Journey From Classical Circuits to Clifford Circuits and Beyond,
doi:10.48550/arXiv.2203.00698.
Agustín Borgna, Simon Perdrix & Benoît Valiron (2021):
Hybrid quantum-classical circuit simplification with the ZX-calculus.
In: Hakjoo Oh: Programming Languages and Systems.
Springer International Publishing,
Cham,
pp. 121–139,
doi:10.1007/978-3-030-89051-3_8.
Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David Gosset & Mark Howard (2019):
Simulation of quantum circuits by low-rank stabilizer decompositions.
Quantum 3,
pp. 181,
doi:10.22331/q-2019-09-02-181.
Sergey Bravyi, Graeme Smith & John A. Smolin (2016):
Trading classical and quantum computational resources.
Physical Review X 6(2),
pp. 021043,
doi:10.1103/PhysRevX.6.021043.
Tristan Cam & Simon Martiel (2023):
Speeding up quantum circuits simulation using ZX-Calculus.
arXiv preprint arXiv:2305.02669.
Julien Codsi & John van de Wetering (2022):
Classically Simulating Quantum Supremacy IQP Circuits trough a Random Graph Approach.
arXiv preprint arXiv:2212.08609.
Bob Coecke & Ross Duncan (2011):
Interacting quantum observables: categorical algebra and diagrammatics.
New Journal of Physics 13,
pp. 043016,
doi:10.1088/1367-2630/13/4/043016.
Bob Coecke & Aleks Kissinger (2017):
Picturing Quantum Processes.
Cambridge University Press,
doi:10.1017/9781316219317.
Alexander Cowtan, Silas Dilkes, Ross Duncan, Will Simmons & Seyon Sivarajah (2020):
Phase Gadget Synthesis for Shallow Circuits.
In: Bob Coecke & Matthew Leifer: Proceedings 16th International Conference on Quantum Physics and Logic, Chapman University, Orange, CA, USA., 10-14 June 2019,
Electronic Proceedings in Theoretical Computer Science 318.
Open Publishing Association,
pp. 213–228,
doi:10.4204/EPTCS.318.13.
Ross Duncan, Aleks Kissinger, Simon Perdrix & John van de Wetering (2020):
Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus.
Quantum 4,
pp. 279,
doi:10.22331/q-2020-06-04-279.
Stefano Gogioso & Richie Yeung (2023):
Annealing Optimisation of Mixed ZX Phase Circuits.
In: Stefano Gogioso & Matty Hoban: Proceedings 19th International Conference on Quantum Physics and Logic, Wolfson College, Oxford, UK, 27 June - 1 July 2022,
Electronic Proceedings in Theoretical Computer Science 394.
Open Publishing Association,
pp. 415–431,
doi:10.4204/EPTCS.394.20.
Aleks Kissinger & John van de Wetering (2020):
PyZX: Large Scale Automated Diagrammatic Reasoning.
In: Bob Coecke & Matthew Leifer: Proceedings 16th International Conference on Quantum Physics and Logic, Chapman University, Orange, CA, USA., 10-14 June 2019,
Electronic Proceedings in Theoretical Computer Science 318.
Open Publishing Association,
pp. 229–241,
doi:10.4204/EPTCS.318.14.
Aleks Kissinger & John van de Wetering (2020):
Reducing the number of non-Clifford gates in quantum circuits.
Physical Review A 102(2),
doi:10.1103/physreva.102.022406.
Aleks Kissinger & John van de Wetering (2022):
Simulating quantum circuits with ZX-calculus reduced stabiliser decompositions.
Quantum Science and Technology 7(4),
pp. 044001,
doi:10.1088/2058-9565/ac5d20.
Aleks Kissinger & John van de Wetering (2023):
Picturing Quantum Software [Preprint].
Aleks Kissinger, John van de Wetering & Renaud Vilmart (2022):
Classical Simulation of Quantum Circuits with Partial and Graphical Stabiliser Decompositions.
In: François Le Gall & Tomoyuki Morimae: 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022),
Leibniz International Proceedings in Informatics (LIPIcs) 232.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany,
pp. 5:1–5:13,
doi:10.4230/LIPIcs.TQC.2022.5.
Mark Koch, Richie Yeung & Quanlong Wang (2023):
Speedy Contraction of ZX Diagrams with Triangles via Stabiliser Decompositions.
arXiv preprint arXiv:2307.01803.
Tommy McElvanney & Miriam Backens (2023):
Flow-preserving ZX-calculus Rewrite Rules for Optimisation and Obfuscation.
In: Shane Mansfield, Benoit Valîron & Vladimir Zamdzhiev: Proceedings of the Twentieth International Conference on Quantum Physics and Logic, Paris, France, 17-21st July 2023,
Electronic Proceedings in Theoretical Computer Science 384.
Open Publishing Association,
pp. 203–219,
doi:10.4204/EPTCS.384.12.
Maximilian Nägele & Florian Marquardt (2023):
Optimizing ZX-Diagrams with Deep Reinforcement Learning.
arXiv preprint arXiv:2311.18588.
John Preskill (2018):
Quantum Computing in the NISQ era and beyond.
Quantum 2,
pp. 79,
doi:10.22331/q-2018-08-06-79.
Hammam Qassim, Hakop Pashayan & David Gosset (2021):
Improved upper bounds on the stabilizer rank of magic states.
Quantum 5,
pp. 606,
doi:10.22331/q-2021-12-20-606.
Matthew Sutcliffe & Aleks Kissinger (2024):
Fast classical simulation of quantum circuits via parametric rewriting in the ZX-calculus [Preprint].
John van de Wetering (2020):
ZX-calculus for the working quantum computer scientist,
doi:10.48550/arXiv.2012.13966.
Robert Wille, Lukas Burgholzer, Stefan Hillmich, Thomas Grurl, Alexander Ploier & Tom Peham (2022):
The Basis of Design Tools for Quantum Computing: Arrays, Decision Diagrams, Tensor Networks, and ZX-Calculus.
In: Proceedings of the 59th ACM/IEEE Design Automation Conference,
DAC '22.
Association for Computing Machinery,
New York, NY, USA,
pp. 1367–1370,
doi:10.1145/3489517.3530627.