References

  1. Miriam Backens (2014): The ZX-calculus Is Complete for Stabilizer Quantum Mechanics. New Journal of Physics 16(9), pp. 093021, doi:10.1088/1367-2630/16/9/093021.
  2. Miriam Backens (2015): Making the Stabilizer ZX-calculus Complete for Scalars. In: Chris Heunen, Peter Selinger & Jamie Vicary: Proceedings of the 12th International Workshop on Quantum Physics and Logic, Electronic Proceedings in Theoretical Computer Science. Open Publishing Association, pp. 17–32, doi:10.4204/EPTCS.195.2.
  3. Miriam Backens & Aleks Kissinger (2019): ZH: A Complete Graphical Calculus for Quantum Computations Involving Classical Non-linearity. In: Peter Selinger & Giulio Chiribella: Proceedings of the 15th International Conference on Quantum Physics and Logic, Electronic Proceedings in Theoretical Computer Science 287. Open Publishing Association, Halifax, Canada, pp. 23–42, doi:10.4204/EPTCS.287.2.
  4. Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, Leo Lobski & John van de Wetering (2021): There and Back Again: A Circuit Extraction Tale. Quantum 5, pp. 421, doi:10.22331/q-2021-03-25-421.
  5. Miriam Backens, Simon Perdrix & Quanlong Wang (2017): A Simplified Stabilizer ZX-calculus. In: Ross Duncan & Chris Heunen: Proceedings 13th International Conference on Quantum Physics and Logic, Electronic Proceedings in Theoretical Computer Science 236. Open Publishing Association, Glasgow, Scotland, pp. 1–20, doi:10.4204/EPTCS.236.1.
  6. Miriam Backens, Simon Perdrix & Quanlong Wang (2020): Towards a Minimal Stabilizer ZX-calculus. Logical Methods in Computer Science Volume 16, Issue 4, doi:10.23638/LMCS-16(4:19)2020.
  7. Niel de Beaudrap, Xiaoning Bian & Quanlong Wang (2020): Fast and Effective Techniques for T-Count Reduction via Spider Nest Identities. In: Steven T. Flammia: 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020), Leibniz International Proceedings in Informatics (LIPIcs) 158. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 11:1–11:23, doi:10.4230/LIPIcs.TQC.2020.11.
  8. Charles H. Bennett & Gilles Brassard (2014): Quantum Cryptography: Public Key Distribution and Coin Tossing. Theoretical Computer Science 560, pp. 7–11, doi:10.1016/j.tcs.2014.05.025.
  9. Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres & William K. Wootters (1993): Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Physical Review Letters 70(13), pp. 1895–1899, doi:10.1103/PhysRevLett.70.1895.
  10. Charles H. Bennett & Stephen J. Wiesner (1992): Communication via One- and Two-Particle Operators on Einstein-Podolsky-Rosen States. Physical Review Letters 69(20), pp. 2881–2884, doi:10.1103/PhysRevLett.69.2881. Available at https://courses.engr.illinois.edu/phys513/sp2019/reading/week9/PhysRevLett.69.2881.pdf.
  11. M. S. Blok, V. V. Ramasesh, T. Schuster, K. O'Brien, J. M. Kreikebaum, D. Dahlen, A. Morvan, B. Yoshida, N. Y. Yao & I. Siddiqi (2021): Quantum Information Scrambling on a Superconducting Qutrit Processor. Physical Review X 11(2), pp. 021010, doi:10.1103/PhysRevX.11.021010.
  12. Alex Bocharov, Martin Roetteler & Krysta M. Svore (2017): Factoring with Qutrits: Shor's Algorithm on Ternary and Metaplectic Quantum Architectures. Physical Review A 96(1), pp. 012306, doi:10.1103/PhysRevA.96.012306. ArXiv:1605.02756.
  13. Robert I. Booth & Titouan Carette (2022): Complete ZX-Calculi for the Stabiliser Fragment in Odd Prime Dimensions. In: Stefan Szeider, Robert Ganian & Alexandra Silva: 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022), Leibniz International Proceedings in Informatics (LIPIcs) 241. Schloss Dagstuhl Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 24:1–24:15, doi:10.4230/LIPIcs.MFCS.2022.24.
  14. Robert I. Booth & Titouan Carette (2023): Complete ZX-calculi for the Stabiliser Fragment in Odd Prime Dimensions. ArXiv:2204.12531v3.
  15. Earl T. Campbell (2014): Enhanced Fault-Tolerant Quantum Computing in d-Level Systems. Physical Review Letters 113(23), pp. 230501, doi:10.1103/PhysRevLett.113.230501. ArXiv:1406.3055.
  16. Titouan Carette (2021): When Only Topology Matters. ArXiv:2102.03178.
  17. Titouan Carette (2021): Wielding the ZX-calculus, Flexsymmetry, Mixed States, and Scalable Notations. Loria, Université de Lorraine. Available at https://hal.archives-ouvertes.fr/tel-03468027.
  18. Yulin Chi, Jieshan Huang, Zhanchuan Zhang, Jun Mao, Zinan Zhou, Xiaojiong Chen, Chonghao Zhai, Jueming Bao, Tianxiang Dai, Huihong Yuan, Ming Zhang, Daoxin Dai, Bo Tang, Yan Yang, Zhihua Li, Yunhong Ding, Leif K. Oxenløwe, Mark G. Thompson, Jeremy L. O'Brien, Yan Li, Qihuang Gong & Jianwei Wang (2022): A Programmable Qudit-Based Quantum Processor. Nature Communications 13(1), pp. 1166, doi:10.1038/s41467-022-28767-x.
  19. Julien Codsi & John van de Wetering (2023): Classically Simulating Quantum Supremacy IQP Circuits through a Random Graph Approach. ArXiv:2212.08609.
  20. Bob Coecke, Giovanni de Felice, Konstantinos Meichanetzidis & Alexis Toumi (2020): Foundations for Near-Term Quantum Natural Language Processing. ArXiv:2012.03755.
  21. Bob Coecke & Ross Duncan (2008): Interacting Quantum Observables. In: Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir & Igor Walukiewicz: Automata, Languages and Programming, Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 298–310, doi:10.1007/978-3-540-70583-3_25. Available at http://personal.strath.ac.uk/ross.duncan/papers/iqo-icalp.pdf.
  22. Bob Coecke & Ross Duncan (2011): Interacting Quantum Observables: Categorical Algebra and Diagrammatics. New Journal of Physics 13(4), pp. 043016, doi:10.1088/1367-2630/13/4/043016.
  23. Bob Coecke & Aleks Kissinger (2017): Picturing Quantum Processes. Cambridge University Press, doi:10.1017/9781316219317.
  24. Cole Comfort (2023): The Algebra for Stabilizer Codes. ArXiv:2304.10584.
  25. Daniele Cozzolino, Beatrice Da Lio, Davide Bacco & Leif Katsuo Oxenløwe (2019): High-Dimensional Quantum Communication: Benefits, Progress, and Future Challenges. Advanced Quantum Technologies 2(12), pp. 1900038, doi:10.1002/qute.201900038.
  26. Shawn X. Cui, Daniel Gottesman & Anirudh Krishna (2017): Diagonal Gates in the Clifford Hierarchy. Physical Review A 95(1), pp. 012329, doi:10.1103/PhysRevA.95.012329. ArXiv:1608.06596.
  27. Niel de Beaudrap (2021): Well-Tempered ZX and ZH Calculi. In: Benoît Valiron, Shane Mansfield, Pablo Arrighi & Prakash Panangaden: Proceedings 17th International Conference on Quantum Physics and Logic, Electronic Proceedings in Theoretical Computer Science 340. Open Publishing Association, Paris, France, pp. 13–45, doi:10.4204/EPTCS.340.2.
  28. Niel de Beaudrap & Richard D. P. East (2023): Simple ZX and ZH Calculi for Arbitrary Finite Dimensions, via Discrete Integrals. ArXiv:2304.03310.
  29. Niel de Beaudrap & Dominic Horsman (2020): The ZX Calculus Is a Language for Surface Code Lattice Surgery. Quantum 4, pp. 218, doi:10.22331/q-2020-01-09-218.
  30. Giovanni de Felice, Razin A. Shaikh, Boldizsár Poór, Lia Yeh, Quanlong Wang & Bob Coecke (2023): Light-Matter Interaction in the ZXW Calculus. ArXiv:2306.02114.
  31. Nadish de Silva (2021): Efficient Quantum Gate Teleportation in Higher Dimensions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477(2251), pp. 20200865, doi:10.1098/rspa.2020.0865. ArXiv:2011.00127.
  32. Jeroen Dehaene & Bart De Moor (2003): Clifford Group, Stabilizer States, and Linear and Quadratic Operations over GF(2). Physical Review A 68(4), pp. 042318, doi:10.1103/PhysRevA.68.042318. ArXiv:quant-ph/0304125.
  33. Ross Duncan, Aleks Kissinger, Simon Perdrix & John van de Wetering (2020): Graph-Theoretic Simplification of Quantum Circuits with the ZX-calculus. Quantum 4, pp. 279, doi:10.22331/q-2020-06-04-279.
  34. Ross Duncan & Maxime Lucas (2014): Verifying the Steane Code with Quantomatic. In: Bob Coecke & Matty Hoban: Proceedings of the 10th International Workshop on Quantum Physics and Logic, Electronic Proceedings in Theoretical Computer Science 171. Open Publishing Association, Castelldefels (Barcelona), Spain, pp. 33–49, doi:10.4204/EPTCS.171.4.
  35. Ross Duncan & Simon Perdrix (2009): Graph States and the Necessity of Euler Decomposition. In: Klaus Ambos-Spies, Benedikt Löwe & Wolfgang Merkle: Mathematical Theory and Computational Practice, Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 167–177, doi:10.1007/978-3-642-03073-4_18.
  36. Ross Duncan & Simon Perdrix (2010): Rewriting Measurement-Based Quantum Computations with Generalised Flow. In: Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide & Paul G. Spirakis: Automata, Languages and Programming, Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 285–296, doi:10.1007/978-3-642-14162-1_24.
  37. Liam Garvie & Ross Duncan (2018): Verifying the Smallest Interesting Colour Code with Quantomatic. In: Bob Coecke & Aleks Kissinger: Proceedings 14th International Conference on Quantum Physics and Logic, Electronic Proceedings in Theoretical Computer Science 266. Open Publishing Association, Nijmegen, The Netherlands, pp. 147–163, doi:10.4204/EPTCS.266.10.
  38. Pranav Gokhale, Jonathan M. Baker, Casey Duckering, Natalie C. Brown, Kenneth R. Brown & Frederic T. Chong (2019): Asymptotic Improvements to Quantum Circuits via Qutrits. In: Proceedings of the 46th International Symposium on Computer Architecture, ISCA '19. Association for Computing Machinery, New York, NY, USA, pp. 554–566, doi:10.1145/3307650.3322253.
  39. Xiaoyan Gong & Quanlong Wang (2017): Equivalence of Local Complementation and Euler Decomposition in the Qutrit ZX-calculus. ArXiv:1704.05955.
  40. Noah Goss, Alexis Morvan, Brian Marinelli, Bradley K. Mitchell, Long B. Nguyen, Ravi K. Naik, Larry Chen, Christian Jünger, John Mark Kreikebaum, David I. Santiago, Joel J. Wallman & Irfan Siddiqi (2022): High-Fidelity Qutrit Entangling Gates for Superconducting Circuits. Nature Communications 13(1), pp. 7481, doi:10.1038/s41467-022-34851-z.
  41. Daniel Gottesman (1998): The Heisenberg Representation of Quantum Computers. ArXiv:quant-ph/9807006.
  42. Daniel Gottesman (1999): Fault-Tolerant Quantum Computation with Higher-Dimensional Systems. In: Colin P. Williams: Quantum Computing and Quantum Communications, Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 302–313, doi:10.1007/3-540-49208-9_27. ArXiv:quant-ph/9802007.
  43. Chris Heunen & Jamie Vicary (2019): Categories for Quantum Theory: An Introduction. Oxford University Press, doi:10.1093/oso/9780198739623.001.0001.
  44. Alexander D. Hill, Mark J. Hodson, Nicolas Didier & Matthew J. Reagor (2021): Realization of Arbitrary Doubly-Controlled Quantum Phase Gates. ArXiv:2108.01652.
  45. Pavel Hrmo, Benjamin Wilhelm, Lukas Gerster, Martin W. van Mourik, Marcus Huber, Rainer Blatt, Philipp Schindler, Thomas Monz & Martin Ringbauer (2023): Native Qudit Entanglement in a Trapped Ion Quantum Processor. Nature Communications 14(1), pp. 2242, doi:10.1038/s41467-023-37375-2.
  46. Emmanuel Jeandel, Simon Perdrix, Renaud Vilmart & Quanlong Wang (2017): ZX-Calculus: Cyclotomic Supplementarity and Incompleteness for Clifford+T Quantum Mechanics. In: Kim G. Larsen, Hans L. Bodlaender & Jean-Francois Raskin: 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017), Leibniz International Proceedings in Informatics (LIPIcs) 83. Schloss DagstuhlLeibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 11:1–11:13, doi:10.4230/LIPIcs.MFCS.2017.11.
  47. Andrey Boris Khesin, Jonathan Z. Lu & Peter W. Shor (2023): Graphical Quantum Clifford-encoder Compilers from the ZX Calculus. ArXiv:2301.02356.
  48. Aleks Kissinger (2022): Phase-free ZX diagrams are CSS codes (...or how to graphically grok the surface code). ArXiv:2204.14038.
  49. Aleks Kissinger & John van de Wetering (2020): PyZX: Large Scale Automated Diagrammatic Reasoning. In: Proceedings 16th International Conference on Quantum Physics and Logic, Electronic Proceedings in Theoretical Computer Science 318. Open Publishing Association, CA, USA., pp. 229–241, doi:10.4204/EPTCS.318.14.
  50. Aleks Kissinger & John van de Wetering (2020): Reducing the Number of Non-Clifford Gates in Quantum Circuits. Physical Review A 102(2), pp. 022406, doi:10.1103/PhysRevA.102.022406. ArXiv:1903.10477.
  51. Aleks Kissinger, John van de Wetering & Renaud Vilmart (2022): Classical Simulation of Quantum Circuits with Partial and Graphical Stabiliser Decompositions. In: François Le Gall & Tomoyuki Morimae: 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022), Leibniz International Proceedings in Informatics (LIPIcs) 232. Schloss Dagstuhl Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 5:1–5:13, doi:10.4230/LIPIcs.TQC.2022.5.
  52. Tuomas Laakkonen, Konstantinos Meichanetzidis & John van de Wetering (2022): A Graphical #SAT Algorithm for Formulae with Small Clause Density. ArXiv:2212.08048.
  53. Tommy McElvanney & Miriam Backens (2022): Complete Flow-Preserving Rewrite Rules for MBQC Patterns with Pauli Measurements. ArXiv:2205.02009.
  54. Konstantinos Meichanetzidis, Stefano Gogioso, Giovanni de Felice, Nicolò Chiappori, Alexis Toumi & Bob Coecke (2021): Quantum Natural Language Processing on Near-Term Quantum Computers. In: Benoît Valiron, Shane Mansfield, Pablo Arrighi & Prakash Panangaden: Proceedings 17th International Conference on Quantum Physics and Logic, Electronic Proceedings in Theoretical Computer Science 340. Open Publishing Association, Paris, France, pp. 213–229, doi:10.4204/EPTCS.340.11.
  55. A. S. Nikolaeva, E. O. Kiktenko & A. K. Fedorov (2022): Decomposing the Generalized Toffoli Gate with Qutrits. Physical Review A 105(3), pp. 032621, doi:10.1103/PhysRevA.105.032621. ArXiv:2112.14535.
  56. Simon Perdrix & Quanlong Wang (2016): Supplementarity Is Necessary for Quantum Diagram Reasoning. In: Piotr Faliszewski, Anca Muscholl & Rolf Niedermeier: 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016), Leibniz International Proceedings in Informatics (LIPIcs) 58. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 76:1–76:14, doi:10.4230/LIPIcs.MFCS.2016.76.
  57. Boldizsár Poór, Quanlong Wang, Razin A. Shaikh, Lia Yeh, Richie Yeung & Bob Coecke (2023): Completeness for Arbitrary Finite Dimensions of ZXW-calculus, a Unifying Calculus. In: 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), Boston, MA, USA, pp. 1–14, doi:10.1109/LICS56636.2023.10175672. ArXiv:2302.12135.
  58. Boldizsár Poór (2022): A Unique Normal Form for Prime-Dimensional Qudit Clifford ZX-calculus. University of Oxford. Available at https://www.cs.ox.ac.uk/people/aleks.kissinger/theses/poor-thesis.pdf.
  59. André Ranchin (2014): Depicting Qudit Quantum Mechanics and Mutually Unbiased Qudit Theories. In: Bob Coecke, Ichiro Hasuo & Prakash Panangaden: Proceedings of the 11th Workshop on Quantum Physics and Logic, Electronic Proceedings in Theoretical Computer Science 172. Open Publishing Association, Kyoto, Japan, pp. 68–91, doi:10.4204/EPTCS.172.6.
  60. Martin Ringbauer, Michael Meth, Lukas Postler, Roman Stricker, Rainer Blatt, Philipp Schindler & Thomas Monz (2022): A Universal Qudit Quantum Processor with Trapped Ions. Nature Physics 18(9), pp. 1053–1057, doi:10.1038/s41567-022-01658-0. ArXiv:2109.06903.
  61. Razin A. Shaikh, Quanlong Wang & Richie Yeung (2022): How to Sum and Exponentiate Hamiltonians in ZXW Calculus. ArXiv:2212.04462.
  62. Alex Townsend-Teague & Konstantinos Meichanetzidis (2022): Simplification Strategies for the Qutrit ZX-Calculus. ArXiv:2103.06914.
  63. John van de Wetering & Lia Yeh (2022): Phase Gadget Compilation for Diagonal Qutrit Gates. ArXiv:2204.13681.
  64. Maarten Van den Nest (2010): Classical Simulation of Quantum Computation, the Gottesman-Knill Theorem, and Slightly Beyond. Quantum Information & Computation 10(3&4), pp. 258–271, doi:10.26421/QIC10.3-4-6. ArXiv:0811.0898.
  65. Quanlong Wang (2018): Qutrit ZX-calculus Is Complete for Stabilizer Quantum Mechanics. In: Bob Coecke & Aleks Kissinger: Proceedings 14th International Conference on Quantum Physics and Logic, Electronic Proceedings in Theoretical Computer Science 266. Open Publishing Association, Nijmegen, The Netherlands, pp. 58–70, doi:10.4204/EPTCS.266.3.
  66. Quanlong Wang (2022): Qufinite ZX-calculus: A Unified Framework of Qudit ZX-calculi. ArXiv:2104.06429.
  67. Quanlong Wang, Richie Yeung & Mark Koch (2022): Differentiating and Integrating ZX Diagrams with Applications to Quantum Machine Learning. ArXiv:2201.13250.
  68. Yuchen Wang, Zixuan Hu, Barry C. Sanders & Sabre Kais (2020): Qudits and High-Dimensional Quantum Computing. Frontiers in Physics 8, doi:10.3389/fphy.2020.589504.
  69. Biaoliang Ye, Zhen-Fei Zheng, Yu Zhang & Chui-Ping Yang (2018): Circuit QED: single-step realization of a multiqubit controlled phase gate with one microwave photonic qubit simultaneously controlling n-1 microwave photonic qubits. Optics Express 26(23), pp. 30689–30702, doi:10.1364/OE.26.030689.
  70. Lia Yeh & John van de Wetering (2022): Constructing All Qutrit Controlled Clifford+T Gates in Clifford+T. In: Claudio Antares Mezzina & Krzysztof Podlaski: Reversible Computation, Lecture Notes in Computer Science. Springer International Publishing, Cham, pp. 28–50, doi:10.1007/978-3-031-09005-9_3. ArXiv:2204.00552.
  71. M. A. Yurtalan, J. Shi, M. Kononenko, A. Lupascu & S. Ashhab (2020): Implementation of a Walsh-Hadamard Gate in a Superconducting Qutrit. Physical Review Letters 125(18), pp. 180504, doi:10.1103/PhysRevLett.125.180504. ArXiv:2003.04879.
  72. Yutsumura (2017): Each Element in a Finite Field Is the Sum of Two Squares. Available at https://yutsumura.com/each-element-in-a-finite-field-is-the-sum-of-two-squares.
  73. Fabio Zanasi (2018): Interacting Hopf Algebras: The Theory of Linear Systems. Ecole Normale Superieure de Lyon. ArXiv:1805.03032.
  74. Chen Zhao & Xiao-Shan Gao (2021): Analyzing the Barren Plateau Phenomenon in Training Quantum Neural Networks with the ZX-calculus. Quantum 5, pp. 466, doi:10.22331/q-2021-06-04-466.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org