1. Samson Abramsky & Bob Coecke (2004): A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004, pp. 415–425, doi:10.1109/LICS.2004.1319636.
  2. Daniela Ashoush & Bob Coecke (2016): Dual Density Operators and Natural Language Meaning. EPTCS 221, pp. 1–10, doi:10.4204/EPTCS.221.1.
  3. Thorsten Beckmann & Georg Oberdieck (2020): Notes on equivariant categories. arXiv preprint arXiv:2006.13626.
  4. Nicolas Bourbaki (2003): Algebra II. Springer-Verlag Berlin Heidelberg, doi:10.1007/978-3-642-61698-3.
  5. Bob Coecke (2016): Terminality implies no-signalling... and much more than that. New Generation Computing 34(1-2), pp. 69–85, doi:10.1007/s00354-016-0201-6.
  6. Bob Coecke & Ross Duncan (2011): Interacting quantum observables: categorical algebra and diagrammatics. New Journal of Physics 13(043016), doi:10.1088/1367-2630/13/4/043016.
  7. Bob Coecke, Chris Heunen & Aleks Kissinger (2016): Categories of quantum and classical channels. Quantum Inf. Process. 15, pp. 51795209, doi:10.1007/s11128-014-0837-4.
  8. Bob Coecke & Aleks Kissinger (2017): Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, doi:10.1017/9781316219317.
  9. Bob Coecke & Konstantinos Meichanetzidis (2020): Meaning Updating of Density Matrices. arXiv preprint arXiv:2001.00862v1.
  10. Bob Coecke, Dusko Pavlovic & Jamie Vicary (2013): A new description of orthogonal bases. Mathematical Structures in Computer Science 23(3), pp. 555–567, doi:10.1017/S0960129512000047.
  11. Bob Coecke & Simon Perdrix (2012): Environment and classical channels in categorical quantum mechanics. Logical Methods in Computer Science 8, doi:10.2168/LMCS-8(4:14)2012.
  12. Bob Coecke, John Selby & Sean Tull (2018): Two Roads to Classicality. EPTCS 266, pp. 104118, doi:10.4204/eptcs.266.7.
  13. Oscar Cunningham & Chris Heunen (2015): Axiomatizing complete positivity. EPTCS 195, pp. 148157, doi:10.4204/eptcs.195.11.
  14. Alexey Elagin (2015): On equivariant triangulated categories. arXiv preprint arXiv:1403.7027.
  15. William Ellison (1970-1971): Waring's Problem for Fields. Séminaire de théorie des nombres de Bordeaux, pp. 1–8. Available at
  16. William Ellison (2013): Waring's problem for fields. arXiv preprint arXiv:1303.4818.
  17. Nora Ganter & Mikhail Kapranov (2014): Symmetric and Exterior Powers of Categories. Transformation Groups 19, pp. 57–103, doi:10.1007/s00031-014-9255-z.
  18. Stefano Gogioso (2017): Fantastic Quantum Theories and Where to Find Them. arXiv Preprint arXiv:1703.10576.
  19. Stefano Gogioso (2019): Higher-order CPM Constructions. EPTCS 287, pp. 145–162, doi:10.4204/EPTCS.287.8.
  20. Stefano Gogioso & Aleks Kissinger (2017): Fully graphical treatment of the quantum algorithm for the Hidden Subgroup Problem. arXiv preprint arXiv:1701.08669.
  21. Stefano Gogioso & Carlo Maria Scandolo (2019): Density Hypercubes, Higher Order Interference and Hyper-decoherence: A Categorical Approach. In: Quantum Interaction. Springer International Publishing, pp. 141–160, doi:10.1007/978-3-030-35895-210.
  22. Stefano Gogioso & William Zeng (2015): Fourier transforms from strongly complementary observables. arXiv Preprint arXiv:1501.04995.
  23. James Hefford & Stefano Gogioso (2020): Hyper-decoherence in Density Hypercubes. arXiv preprint arXiv:2003.08318.
  24. Chris Heunen & Jamie Vicary (2019): Categories for Quantum Theory: An Introduction. Oxford University Press, doi:10.1093/oso/9780198739623.001.0001.
  25. Nathan Jacobson (1989): Basic Algebra II: Second Edition. W. H. Freeman and Company.
  26. Stephen Lack (2004): Composing PROPs. Theory and Applications of Categories 13(9), pp. 147–163.
  27. Ciarán M. Lee & John H. Selby (2017): Higher-Order Interference in Extensions of Quantum Theory. Found Phys 47, pp. 89–112, doi:10.1007/s10701-016-0045-4.
  28. Ciarán M. Lee & John H. Selby (2018): A no-go theorem for theories that decohere to quantum mechanics. Proc. R. Soc. A 474(20170732), doi:10.1098/rspa.2017.0732.
  29. Robin Piedeleu, Dimitri Kartsaklis, Bob Coecke & Mehrnoosh Sadrzadeh (2015): Open System Categorical Quantum Semantics in Natural Language Processing. arXiv preprint arXiv:1502.00831.
  30. Joseph J. Rotman (2002): Advanced Modern Algebra. Prentice Hall.
  31. John H. Selby & Ciarán M. Lee (2020): Compositional resource theories of coherence. Quantum 4, pp. 319, doi:10.22331/q-2020-09-11-319.
  32. Peter Selinger (2007): Dagger Compact Closed Categories and Completely Positive Maps. Electronic Notes in Theoretical Computer Science 170, pp. 139–163, doi:10.1016/j.entcs.2006.12.018.
  33. Peter Selinger (2008): Idempotents in Dagger Categories: (Extended Abstract). Electronic Notes in Theoretical Computer Science 210, pp. 107–122, doi:10.1016/j.entcs.2008.04.021.
  34. Evgeny Shinder (2018): Group actions on categories and Elagins theorem revisited. European Journal of Mathematics 4, pp. 413–422, doi:10.1007/s40879-017-0150-8.
  35. Carl Siegel (1921): Darstellung total positiver Zahlen durch Quadrate. Math Z 11, pp. 246–275, doi:10.1007/BF01203627.
  36. Jamie Vicary (2013): Topological Structure of Quantum Algorithms. In: 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 93–102, doi:10.1109/LICS.2013.14.
  37. Maaike Zwart & Bob Coecke (2018): Double Dilation = Double Mixing. EPTCS 266, pp. 133–146, doi:10.4204/EPTCS.266.9.
  38. Karol Życzkowski (2008): Quartic quantum theory: an extension of the standard quantum mechanics. J. Phys. A: Math. Theor. 41(355302), doi:10.1088/1751-8113/41/35/355302.

Comments and questions to:
For website issues: