1. H. B. Axelsen & R. Glück (2011): What do reversible programs compute?. In: M. Hofmann: Proceedings of the 14th International Conference on Foundations of Software Science and Computational Structures (FoSSaCS 2011), Lecture Notes in Computer Science 6604. Springer, pp. 42–56, doi:10.1007/978-3-540-70583-3_22.
  2. C. H. Bennett (1973): Logical reversibility of computation. IBM Journal of Research and Development 17(6), pp. 525–532, doi:10.1147/rd.176.0525.
  3. J. R. B. Cockett & S. Lack (2002): Restriction categories I: Categories of partial maps. Theoretical Computer Science 270(1–2), pp. 223–259, doi:10.1016/S0304-3975(00)00382-0.
  4. C. Comfort (2020): The ZX& calculus: A complete graphical calculus for classical circuits using spiders. arXiv preprint 2004.05287.
  5. B. G. Giles (2014): An Investigation of some Theoretical Aspects of Reversible Computing. University of Calgary, doi:10.11575/PRISM/24917.
  6. R. Glück & R. Kaarsgaard (2018): A categorical foundation for structured reversible flowchart languages: Soundness and adequacy. Logical Methods in Computer Science 14(3), doi:10.23638/LMCS-14(3:16)2018.
  7. R. Glück, R. Kaarsgaard & T. Yokoyama (2020): Reversible programs have reversible semantics. In: Emil Sekerinski & Nelma Moreira: FM'19 Workshops, Lecture Notes in Computer Science 12233. Springer-Verlag, pp. 413–427, doi:10.1016/j.tcs.2015.07.046.
  8. C. Hermida & R. D. Tennent (2012): Monoidal indeterminates and categories of possible worlds. Theoretical Computer Science 430, pp. 3–22, doi:10.1016/j.tcs.2012.01.001.
  9. C. Heunen (2009): Categorical quantum models and logics. Radboud University Nijmegen, doi:10.5117/9789085550242.
  10. C. Heunen & J. Vicary (2019): Categories for Quantum Theory. Oxford University Press, doi:10.1093/oso/9780198739623.001.0001.
  11. M. Huot & S. Staton (2018): Universal properties in quantum theory. In: P. Selinger & G. Chiribella: Proceedings of the 15th International Conference on Quantum Physics and Logic (QPL 2018), Electronic Proceedings in Theoretical Computer Science 287. Open Publishing Association, pp. 213–224, doi:10.4204/EPTCS.287.12.
  12. M. Huot & S. Staton (2019): Quantum channels as a categorical completion. In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2019). IEEE, pp. 1–13, doi:10.1109/LICS.2019.8785700.
  13. R. Kaarsgaard, H. B. Axelsen & R. Glück (2017): Join inverse categories and reversible recursion. Journal of Logical and Algebraic Methods in Programming 87, pp. 33–50, doi:10.1016/j.jlamp.2016.08.003.
  14. J. Kastl (1979): Inverse categories. In: Hans-Jürgen Hoehnke: Algebraische Modelle, Kategorien und Gruppoide, Studien zur Algebra und ihre Anwendungen 7. Akademie-Verlag, pp. 51–60.
  15. R. Landauer (1961): Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5(3), pp. 183–191, doi:10.1147/rd.53.0183.
  16. R. Renner (2011): Quantum Information Theory. Lecture notes.
  17. M. Soeken, R. Wille, O. Keszocze, D. M. Miller & R. Drechsler (2015): Embedding of large Boolean functions for reversible logic. ACM Journal on Emerging Technologies in Computing Systems (JETC) 12(4), pp. 1–26, doi:10.1016/j.vlsi.2013.08.002.
  18. W. F. Stinespring (1955): Positive functions on C*-algebras. Proceedings of the American Mathematical Society 6(2), pp. 211–216, doi:10.2307/2032342.
  19. A. Westerbaan & B. Westerbaan (2016): Paschke Dilations. In: R. Duncan & C. Heunen: Proceedings of the 13th International Conference on Quantum Physics and Logic (QPL 2016), Electronic Proceedings in Theoretical Computer Science 236. Open Publishing Association, pp. 229–244, doi:10.4204/EPTCS.236.15.

Comments and questions to:
For website issues: