References

  1. Sivert Aasnæss (2020): Cohomology and the algebraic structure of contextuality in measurement based quantum computation. EPTCS 318, pp. 242–253, doi:10.4204/EPTCS.318.15.
  2. Samson Abramsky (2013): Relational databases and Bells theorem. In: In search of elegance in the theory and practice of computation. Springer, pp. 13–35, doi:10.1007/978-3-642-41660-6_2.
  3. Samson Abramsky & Rui Soares Barbosa (2021): The logic of contextuality. Leibniz International Proceedings in Informatics (LIPIcs) 183: 5:1–5:18, doi:10.4230/LIPIcs.CSL.2021.5.
  4. Samson Abramsky, Rui Soares Barbosa, Martti Karvonen & Shane Mansfield (2019): A comonadic view of simulation and quantum resources. In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, pp. 1–12, doi:10.1109/LICS.2019.8785677.
  5. Samson Abramsky, Rui Soares Barbosa, Kohei Kishida, Raymond Lal & Shane Mansfield (2015): Contextuality, cohomology and paradox. Leibniz International Proceedings in Informatics (LIPIcs) 41:211-228, doi:10.4230/LIPIcs.CSL.2015.211.
  6. Samson Abramsky, Rui Soares Barbosa, Kohei Kishida, Raymond Lal & Shane Mansfield (2016): Possibilities determine the combinatorial structure of probability polytopes. Journal of Mathematical Psychology 74, pp. 58–65, doi:10.1016/j.jmp.2016.03.006.
  7. Samson Abramsky, Rui Soares Barbosa & Shane Mansfield (2017): Contextual fraction as a measure of contextuality. Physical review letters 119(5), pp. 050504, doi:10.1103/PhysRevLett.119.050504.
  8. Samson Abramsky, Rui Soares Barbosa, Nadish de Silva & Octavio Zapata (2017): The quantum monad on relational structures. Leibniz International Proceedings in Informatics (LIPIcs) 83:35:1–35:19, doi:10.4230/LIPIcs.MFCS.2017.35.
  9. Samson Abramsky & Adam Brandenburger (2011): The sheaf-theoretic structure of non-locality and contextuality. New Journal of Physics 13(11), pp. 113036, doi:10.1088/1367-2630/13/11/113036.
  10. Samson Abramsky & Adam Brandenburger (2014): An operational interpretation of negative probabilities and no-signalling models. In: Horizons of the mind. A tribute to Prakash Panangaden. Springer, pp. 59–75, doi:10.1007/978-3-319-06880-0_3.
  11. Samson Abramsky & Giovanni Carù (2019): Non-locality, contextuality and valuation algebras: a general theory of disagreement. Philosophical Transactions of the Royal Society A 377(2157), pp. 20190036, doi:10.1098/rsta.2019.0036.
  12. Samson Abramsky & Bob Coecke (2009): Categorical quantum mechanics. Handbook of quantum logic and quantum structures 2, pp. 261–325, doi:10.1016/B978-0-444-52869-8.50010-4.
  13. Samson Abramsky & Lucien Hardy (2012): Logical bell inequalities. Physical Review A 85(6), pp. 062114, doi:10.1103/PhysRevA.85.062114.
  14. Samson Abramsky, Shane Mansfield & Rui Soares Barbosa (2012): The cohomology of non-locality and contextuality. EPTCS 95, doi:10.4204/EPTCS.95.1.
  15. Rui Soares Barbosa, Tom Douce, Pierre-Emmanuel Emeriau, Elham Kashefi & Shane Mansfield (2019): Continuous-variable nonlocality and contextuality. arXiv preprint arXiv:1905.08267.
  16. Jonathan Barrett, Robin Lorenz & Ognyan Oreshkov (2019): Quantum causal models. arXiv preprint arXiv:1906.10726.
  17. Jonathan Barrett, Robin Lorenz & Ognyan Oreshkov (2021): Cyclic quantum causal models. Nature communications 12(1), pp. 1–15, doi:10.1038/s41467-020-20456-x.
  18. Ämin Baumeler, Adrien Feix & Stefan Wolf (2014): Maximal incompatibility of locally classical behavior and global causal order in multiparty scenarios. Phys. Rev. A 90, pp. 042106, doi:10.1103/PhysRevA.90.042106.
  19. Ämin Baumeler & Stefan Wolf (2014): Perfect signaling among three parties violating predefined causal order. In: 2014 IEEE International Symposium on Information Theory. IEEE, pp. 526–530, doi:10.1109/ISIT.2014.6874888.
  20. N. Bohr (1935): Can Quantum-Mechanical Description of Physical Reality be Considered Complete?. Phys. Rev. 48, pp. 696–702, doi:10.1103/PhysRev.48.696. Available at https://link.aps.org/doi/10.1103/PhysRev.48.696.
  21. Cyril Branciard, Mateus Araújo, Adrien Feix, Fabio Costa & Časlav Brukner (2015): The simplest causal inequalities and their violation. New Journal of Physics 18(1), pp. 013008, doi:10.1088/1367-2630/18/1/013008.
  22. Giovanni Caru (2017): On the cohomology of contextuality. EPTCS 266, doi:10.4204/EPTCS.236.2.
  23. Giovanni Caru (2018): Towards a complete cohomology invariant for non-locality and contextuality. arXiv preprint arXiv:1807.04203.
  24. Giulio Chiribella, Giacomo Mauro DAriano & Paolo Perinotti (2010): Probabilistic theories with purification. Physical Review A 81(6), pp. 062348, doi:10.1103/PhysRevA.81.062348.
  25. Giulio Chiribella, Giacomo Mauro DAriano & Paolo Perinotti (2011): Informational derivation of quantum theory. Physical Review A 84(1), pp. 012311, doi:10.1103/PhysRevA.84.012311.
  26. Giulio Chiribella, Giacomo Mauro DAriano & Paolo Perinotti (2016): Quantum from principles. In: Quantum theory: informational foundations and foils. Springer, pp. 171–221, doi:10.1007/978-94-017-7303-4_6.
  27. Giulio Chiribella, Giacomo Mauro DAriano, Paolo Perinotti & Benoit Valiron (2013): Quantum computations without definite causal structure. Physical Review A 88(2), doi:10.1103/physreva.88.022318.
  28. Bob Coecke (2014): Terminality implies non-signalling. EPTCS 172, pp. 27–35, doi:10.4204/EPTCS.172.3.
  29. Bob Coecke (2016): Terminality implies no-signalling... and much more than that. New Generation Computing 34(1-2), pp. 69–85, doi:10.1007/s00354-016-0201-6.
  30. Bob Coecke, Chris Heunen & Aleks Kissinger (2016): Categories of quantum and classical channels. Quantum Information Processing 15(12), pp. 5179–5209, doi:10.1007/s11128-014-0837-4.
  31. Bob Coecke & Aleks Kissinger (2017): Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, doi:10.1017/9781316219317.
  32. Bob Coecke & Raymond Lal (2012): Time asymmetry of probabilities versus relativistic causal structure: An arrow of time. Physical review letters 108(20), pp. 200403, doi:10.1103/PhysRevLett.108.200403.
  33. Nadish De Silva & Rui Soares Barbosa (2019): Contextuality and noncommutative geometry in quantum mechanics. Communications in Mathematical Physics 365(2), pp. 375–429, doi:10.1007/s00220-018-3222-9.
  34. Ehtibar N. Dzhafarov, Janne V. Kujala & Victor H. Cervantes (2016): Contextuality-by-Default: A Brief Overview of Ideas, Concepts, and Terminology. In: Harald Atmanspacher, Thomas Filk & Emmanuel Pothos: Quantum Interaction. Springer International Publishing, Cham, pp. 12–23, doi:10.1007/978-3-319-28675-4_2.
  35. Giacomo Mauro DAriano (2018): Causality re-established. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376(2123), pp. 20170313, doi:10.1098/rsta.2017.0313.
  36. Pierre-Emmanuel Emeriau, Mark Howard & Shane Mansfield (2020): Quantum Advantage in Information Retrieval. arXiv preprint arXiv:2007.15643.
  37. Tobias Fritz (2010): Quantum correlations in the temporal Clauser–Horne–Shimony–Holt (CHSH) scenario. New Journal of Physics 12(8), pp. 083055, doi:10.1088/1367-2630/12/8/083055.
  38. Tobias Fritz (2012): Beyond Bells theorem: correlation scenarios. New Journal of Physics 14(10), pp. 103001, doi:10.1088/1367-2630/14/10/103001.
  39. Tobias Fritz (2016): Beyond Bells theorem II: Scenarios with arbitrary causal structure. Communications in Mathematical Physics 341(2), pp. 391–434, doi:10.1007/s00220-015-2495-5.
  40. Rodrigo Gallego, Lars Erik Würflinger, Rafael Chaves, Antonio Acín & Miguel Navascués (2014): Nonlocality in sequential correlation scenarios. New Journal of Physics 16(3), pp. 033037, doi:10.1088/1367-2630/16/3/033037/.
  41. Stefano Gogioso (2017): Categorical Quantum Dynamics. University of Oxford.
  42. Stefano Gogioso (2017): Fantastic quantum theories and where to find them. To appear in Compositionality (ACT 2019). Available at https://arxiv.org/abs/1703.10576.
  43. Stefano Gogioso & Carlo Maria Scandolo (2018): Categorical probabilistic theories. EPTCS 266, pp. 367–385, doi:10.4204/EPTCS.266.23.
  44. Stefano Gogioso & William Zeng (2019): Generalised Mermin-type non-locality arguments. Logical Methods in Computer Science 15, doi:10.23638/LMCS-15(2:3)2019.
  45. Kaumudibikash Goswami, Christina Giarmatzi, Michael Kewming, Fabio Costa, Cyril Branciard, Jacquiline Romero & Andrew G. White (2018): Indefinite Causal Order in a Quantum Switch. Physical Review Letters 121(9):090503, doi:10.1103/PhysRevLett.121.090503.
  46. Joe Henson, Raymond Lal & Matthew F Pusey (2014): Theory-independent limits on correlations from generalized Bayesian networks. New Journal of Physics 16(11), pp. 113043, doi:10.1088/1367-2630/16/11/113043.
  47. Christiaan Heunen & Jamie Vicary (2019): Categories for quantum theory: an introduction. Oxford University Press, United Kingdom, doi:10.1093/oso/9780198739623.001.0001.
  48. J\IeCø rgen Kalckar (1985): General Discussion At The Fifth Solvay Conference: Unpublished Manuscript From Folder Labelled Notes From Solvay Meeting(1927). In: Foundations of Quantum Physics I (19261932), Niels Bohr Collected Works 6. Elsevier, pp. 99 – 106, doi:10.1016/S1876-0503(08)70332-3.
  49. Martti Karvonen (2018): Categories of empirical models. EPTCS 287, doi:10.4204/eptcs.287.14.
  50. Martti Karvonen (2021): Neither contextuality nor non-locality admit catalysts. arXiv preprint arXiv:2102.07637.
  51. Andrei Khrennikov (1993): p-Adic probability theory and its applications. The principle of statistical stabilization of frequencies. Theoretical and Mathematical Physics 97(3), pp. 1340–1348, doi:10.1007/BF01015763.
  52. Kohei Kishida (2014): Stochastic Relational Presheaves and Dynamic Logic for Contextuality. Electronic Proceedings in Theoretical Computer Science 172, pp. 115132, doi:10.4204/eptcs.172.9.
  53. Kohei Kishida (2016): Logic of local inference for contextuality in quantum physics and beyond. Forty-Third International Colloquium on Automata, Languages, and Programming (ICALP 2016) 113:1–113:14, doi:10.4230/LIPIcs.ICALP.2016.113.
  54. Aleks Kissinger, Matty Hoban & Bob Coecke (2017): Equivalence of relativistic causal structure and process terminality. arXiv preprint arXiv:1708.04118.
  55. Aleks Kissinger & Sander Uijlen (2017): A categorical semantics for causal structure. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, pp. 1–12, doi:10.23638/LMCS-15(3:15)2019.
  56. Shane Mansfield (2017): Consequences and applications of the completeness of Hardy's nonlocality. Physical Review A 95(2), pp. 022122, doi:10.1103/PhysRevA.95.022122.
  57. Shane Mansfield (2017): Contextuality in Causal scenarios. https://simons.berkeley.edu/sites/default/files/docs/8998/leachtsimons.pdf (accessed 14 Mar 2021).
  58. Shane Mansfield (2017): A unified approach to contextuality and violations of macrorealism. https://www1.psych.purdue.edu/~ehtibar/workshop/files/leacht_prague.pdf (accessed 14 Mar 2021).
  59. Shane Mansfield & Rui Soares Barbosa (2014): Extendability in the sheaf-theoretic approach: Construction of Bell models from Kochen-Specker models. arXiv preprint arXiv:1402.4827.
  60. Shane Mansfield & Tobias Fritz (2012): Hardys non-locality paradox and possibilistic conditions for non-locality. Foundations of Physics 42(5), pp. 709–719, doi:10.1007/s10701-012-9640-1.
  61. Shane Mansfield & Elham Kashefi (2018): Quantum advantage from sequential-transformation contextuality. Physical review letters 121(23), pp. 230401, doi:10.1103/PhysRevLett.121.230401.
  62. Ognyan Oreshkov, Fabio Costa & Časlav Brukner (2012): Quantum correlations with no causal order. Nature Communications 3:1092, doi:10.1038/ncomms2076.
  63. Ognyan Oreshkov & Christina Giarmatzi (2016): Causal and causally separable processes. New Journal of Physics 18(9), pp. 093020, doi:10.1088/1367-2630/18/9/093020/.
  64. Nicola Pinzani & Stefano Gogioso (2020): Giving Operational Meaning to the Superposition of Causal Orders. To appear in EPTCS (QPL 2020). Available at https://arxiv.org/abs/2003.13306.
  65. Nicola Pinzani, Stefano Gogioso & Bob Coecke (2019): Categorical semantics for time travel. In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, pp. 1–20, doi:10.1109/LICS.2019.8785664.
  66. Arkady Plotnitsky (2019): Spooky predictions at a distance: reality, complementarity and contextuality in quantum theory. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377(2157), pp. 20190089, doi:10.1098/rsta.2019.0089.
  67. Hans Reichenbach (1956): The direction of time. University of California Berkeley Press, doi:10.1063/1.3059791.
  68. Giulia Rubino, Lee A. Rozema, Adrien Feix, Mateus Araújo, Jonas M. Zeuner, Lorenzo M. Procopio, Časlav Brukner & Philip Walther (2017): Experimental verification of an indefinite causal order. Science Advances 3(3), doi:10.1126/sciadv.1602589.
  69. Sam Staton & Sander Uijlen (2018): Effect algebras, presheaves, non-locality and contextuality. Information and Computation 261, pp. 336–354, doi:10.1016/j.ic.2018.02.012.
  70. Linde Wester (2018): Almost Equivalent Paradigms of Contextuality. Electronic Proceedings in Theoretical Computer Science 266, pp. 122, doi:10.4204/eptcs.266.1.
  71. Linde Wester (2018): Classical and Quantum Structures in Computation. University of Oxford.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org