1. Alastair A. Abbott, Julian Wechs, Dominic Horsman, Mehdi Mhalla & Cyril Branciard (2020): Communication through coherent control of quantum channels. Quantum 4, pp. 333, doi:10.22331/Q-2020-09-24-333. Available at
  2. Samson Abramsky & Bob Coecke (2003): Physical traces: Quantum vs. classical information processing. In: Electronic Notes in Theoretical Computer Science 69. Elsevier B.V., pp. 1–22, doi:10.1016/S1571-0661(04)80556-5.
  3. Samson Abramsky & Bob Coecke (2004): A categorical semantics of quantum protocols. In: Proceedings - Symposium on Logic in Computer Science 19, pp. 415–425, doi:10.1109/lics.2004.1319636.
  4. Huzihiro Araki (1980): On a characterization of the state space of quantum mechanics. Communications in Mathematical Physics 75(1), pp. 1–24, doi:10.1007/BF01609054.
  5. Mateus Araújo, Fabio Costa & \begingroupłet [Pleaseinsert\PrerenderUnicodeČintopreamble]aslav Brukner (2014): Computational advantage from quantum-controlled ordering of gates. Physical Review Letters 113(25), pp. 250402, doi:10.1103/PhysRevLett.113.250402. Available at
  6. Howard Barnum, Jonathan Barrett, Matthew Leifer & Alexander Wilce (2007): Generalized no-broadcasting theorem. Physical Review Letters 99(24), pp. 240501, doi:10.1007/BF00690066.
  7. Jonathan Barrett (2007): Information processing in generalized probabilistic theories. Physical Review A 75(3), pp. 032304, doi:10.1103/PhysRevA.75.032304. Available at
  8. Jessica Bavaresco, Mio Murao & Marco Túlio Quintino (2020): Strict hierarchy between parallel, sequential, and indefinite-causal-order strategies for channel discrimination. arXiv preprint arXiv:2011.08300. Available at
  9. Jessica Bavaresco, Mio Murao & Marco Túlio Quintino (2021): Unitary channel discrimination beyond group structures: Advantages of sequential and indefinite-causal-order strategies. arXiv preprint arXiv:2105.13369. Available at
  10. Alessandro Bisio, Giulio Chiribella, Giacomo Mauro D\begingroupłet [Pleaseinsert\PrerenderUnicode’intopreamble]Ariano, Stefano Facchini & Paolo Perinotti (2010): Optimal quantum learning of a unitary transformation. Physical Review A 81(3), pp. 032324, doi:10.1142/S0219749906002018.
  11. Alessandro Bisio, Giulio Chiribella, Giacomo Mauro D\begingroupłet [Pleaseinsert\PrerenderUnicode’intopreamble]Ariano & Paolo Perinotti (2010): Information-disturbance tradeoff in estimating a unitary transformation. Physical Review A 82(6), pp. 062305, doi:10.1103/PhysRevA.72.042338.
  12. Alessandro Bisio & Paolo Perinotti (2019): Theoretical framework for higher-order quantum theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475(2225), pp. 20180706, doi:10.1098/rspa.2018.0706. Available at
  13. Titouan Carette, Marc De Visme & Simon Perdrix (2021): Graphical Language with Delayed Trace: Picturing Quantum Computing with Finite Memory. arXiv preprint arXiv:2102.03133v2.
  14. Esteban Castro-Ruiz, Flaminia Giacomini & Časlav Brukner (2018): Dynamics of Quantum Causal Structures. Phys. Rev. X 8, pp. 011047, doi:10.1103/PhysRevX.8.011047. Available at
  15. G. Chiribella, G. M. D'Ariano & P. Perinotti (2008): Quantum circuit architecture. Physical Review Letters 101(6), pp. 060401, doi:10.1103/PhysRevLett.101.060401. Available at
  16. G Chiribella, G M D'ariano & P Perinotti (2008): Transforming quantum operations: Quantum supermaps. EPL 83, pp. 30004, doi:10.1209/0295-5075/83/30004. Available at
  17. G. Chiribella, G.M. D'Ariano & P. Perinotti (2010): Probabilistic theories with purification. Phys. Rev. A 81, pp. 062348, doi:10.1103/PhysRevA.81.062348. Available at
  18. Giulio Chiribella (2012): Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Physical Review A (Rapid Communication) 86(4), pp. 040301, doi:10.1103/PhysRevA.86.040301.
  19. Giulio Chiribella, Manik Banik, Some Sankar Bhattacharya, Tamal Guha, Mir Alimuddin, Arup Roy, Sutapa Saha, Sristy Agrawal & Guruprasad Kar (2021): Indefinite causal order enables perfect quantum communication with zero capacity channels. New Journal of Physics, doi:10.1088/1367-2630/abe7a0. Available at
  20. Giulio Chiribella, Giacomo Mauro D'Ariano, Paolo Perinotti & Benoit Valiron (2013): Quantum computations without definite causal structure. Physical Review A 88(2), pp. 022318, doi:10.1103/PhysRevA.88.022318.
  21. Giulio Chiribella, Giacomo Mauro D\begingroupłet [Pleaseinsert\PrerenderUnicode’intopreamble]Ariano & Paolo Perinotti (2008): Optimal cloning of unitary transformation. Physical Review Letters 101(18), pp. 180504, doi:10.1103/PhysRevA.72.042338.
  22. Giulio Chiribella, Giacomo Mauro D\begingroupłet [Pleaseinsert\PrerenderUnicode’intopreamble]Ariano & Paolo Perinotti (2009): Theoretical framework for quantum networks. Physical Review A 80(2), pp. 022339, doi:10.1103/PhysRevLett.99.240501.
  23. Giulio Chiribella, Giacomo Mauro D\begingroupłet [Pleaseinsert\PrerenderUnicode’intopreamble]Ariano & Paolo Perinotti (2011): Informational derivation of quantum theory. Physical Review A 84(1), pp. 012311, doi:10.1103/PhysRevLett.103.170502.
  24. Giulio Chiribella, Giacomo Mauro D\begingroupłet [Pleaseinsert\PrerenderUnicode’intopreamble]Ariano & Paolo Perinotti (2016): Quantum from Principles. In: Fundamental Theories of Physics 181. Springer, pp. 171–221, doi:10.1007/978-94-017-7303-4_6. Available at
  25. Giulio Chiribella, Giacomo Mauro D\begingroupłet [Pleaseinsert\PrerenderUnicode’intopreamble]Ariano, Paolo Perinotti & Benoit Valiron (2009): Beyond quantum computers. arXiv preprint arXiv:0912.0195.
  26. Giulio Chiribella, Alessandro Toigo & Veronica Umanità (2013): Normal completely positive maps on the space of quantum operations. Open Systems & Information Dynamics 20(01), pp. 1350003, doi:10.1088/1751-8113/41/35/355302.
  27. Giulio Chiribella, Matthew Wilson & H. F. Chau (2020): Quantum and Classical Data Transmission Through Completely Depolarising Channels in a Superposition of Cyclic Orders. arXiv preprint arXiv:2005.00618. Available at
  28. J R B Cockett & R A G Seely (1997): Proof theory for full intuitionistic linear logic, bilinear logic, and mix categories. Technical Report 5.
  29. Robin Cockett, Cole Comfort & Priyaa Srinivasan (2018): Dagger linear logic for categorical quantum mechanics. arXiv preprint arXiv:1809.00275. Available at
  30. Robin Cockett & Priyaa V Srinivasan (2021): Exponential modalities and complementarity. arXiv preprint arXiv:2103.05191v1.
  31. Bob Coecke (2010): Quantum picturalism. Contemporary Physics 51(1), pp. 59–83, doi:10.1080/00107510903257624.
  32. Bob Coecke (2016): Terminality implies no-signalling... and much more than that. New Generation Computing 34(1-2), pp. 69–85, doi:10.1007/s00354-016-0201-6.
  33. Bob Coecke & Ross Duncan (2009): Interacting Quantum Observables: Categorical Algebra and Diagrammatics, doi:10.1088/1367-2630/13/4/043016. Available at
  34. Bob Coecke, Bill Edwards & Robert W. Spekkens (2011): Phase groups and the origin of non-locality for qubits. In: Electronic Notes in Theoretical Computer Science 270. Elsevier, pp. 15–36, doi:10.1016/j.entcs.2011.01.021.
  35. Bob Coecke, Tobias Fritz & Robert W. Spekkens (2014): A mathematical theory of resources, doi:10.1016/j.ic.2016.02.008. Available at
  36. Bob Coecke & Aleks Kissinger (2010): The compositional structure of multipartite quantum entanglement. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6199 LNCS. Springer Verlag, pp. 297–308, doi:10.1007/978-3-642-14162-1_25. Available at
  37. Bob Coecke & Aleks Kissinger (2017): Picturing quantum processes: A first course in quantum theory and diagrammatic reasoning. Cambridge University Press, doi:10.1017/9781316219317. Available at /core/books/picturing-quantum-processes/1119568B3101F3A685BE832FEEC53E52.
  38. Bob Coecke & Raymond Lal (2012): Time asymmetry of probabilities versus relativistic causal structure: An arrow of time. Physical Review Letters 108(20), doi:10.1103/PhysRevLett.108.200403.
  39. Bob Coecke & Raymond Lal (2013): Causal Categories: Relativistically Interacting Processes. Foundations of Physics 43(4), pp. 458–501, doi:10.1007/s10701-012-9646-8.
  40. Bob Coecke & Dusko Pavlovic (2007): Quantum measurements without sums. In: Mathematics of Quantum Computation and Quantum Technology. CRC Press, pp. 559–596, doi:10.1201/9781584889007.ch16. Available at
  41. Giacomo Mauro D'Ariano (2006): How to Derive the Hilbert-Space Formulation of Quantum Mechanics From Purely Operational Axioms. In: AIP Conference Proceedings 844. AIP, pp. 101–128, doi:10.1063/1.2219356.
  42. Qingxiuxiong Dong, Marco Túlio Quintino, Akihito Soeda & Mio Murao (2021): Success-or-Draw: A Strategy Allowing Repeat-Until-Success in Quantum Computation. Physical Review Letters 126(15), pp. 150504, doi:10.1103/PhysRevLett.126.150504. Available at
  43. Qingxiuxiong Dong, Marco Túlio Quintino, Akihito Soeda & Mio Murao (2021): The quantum switch is uniquely defined by its action on unitary operations. arXiv preprint arXiv:2106.00034. Available at
  44. Daniel Ebler, Sina Salek & Giulio Chiribella (2018): Enhanced Communication with the Assistance of Indefinite Causal Order. Physical Review Letters 120(12), pp. 120502, doi:10.1103/PhysRevLett.120.120502. Available at
  45. Thomas D Galley, Flaminia Giacomini & John H Selby: A no-go theorem on the nature of the gravitational field beyond quantum theory. arXiv preprint arXiv:2012.01441v1.
  46. Stefano Gogioso (2019): A Diagrammatic Approach to Quantum Dynamics. arXiv, doi:10.4230/LIPIcs.CALCO.2019.16. Available at
  47. Stefano Gogioso & Fabrizio Genovese (2017): Infinite-dimensional categorical quantum mechanics. In: Electronic Proceedings in Theoretical Computer Science, EPTCS 236. Open Publishing Association, pp. 51–69, doi:10.4204/EPTCS.236.4.
  48. Stefano Gogioso & Fabrizio Genovese (2018): Towards quantum field theory in categorical quantum mechanics. In: Electronic Proceedings in Theoretical Computer Science, EPTCS 266. Open Publishing Association, pp. 349–366, doi:10.4204/EPTCS.266.22.
  49. Stefano Gogioso & Fabrizio Genovese (2019): Quantum field theory in categorical quantum mechanics. In: Electronic Proceedings in Theoretical Computer Science, EPTCS 287. Open Publishing Association, pp. 163–177, doi:10.4204/EPTCS.287.9.
  50. Gilad Gour & Carlo Maria Scandolo: Dynamical Resources. arXiv preprint arXiv:2101.01552v1.
  51. Gilad Gour & Carlo Maria Scandolo (2021): Entanglement of a bipartite channel. Physical Review A 103(6), pp. 062422, doi:10.1103/PhysRevA.103.062422. Available at
  52. Philippe Allard Guérin, Adrien Feix, Mateus Araújo & \begingroupłet [Pleaseinsert\PrerenderUnicodeČintopreamble]aslav Brukner (2016): Exponential Communication Complexity Advantage from Quantum Superposition of the Direction of Communication. Physical Review Letters 117(10), pp. 100502, doi:10.1103/PhysRevLett.117.100502.
  53. Lucien Hardy (2001): Quantum Theory From Five Reasonable Axioms. arXiv preprint arXiv:quant-ph/0101012. Available at
  54. Lucien Hardy (2007): Towards quantum gravity: a framework for probabilistic theories with non-fixed causal structure. Journal of Physics A: Mathematical and Theoretical 40(12), pp. 3081, doi:10.1007/BF02105068.
  55. Lucien Hardy (2011): Reformulating and reconstructing quantum theory. arXiv preprint arXiv:1104.2066.
  56. Lucien Hardy (2021): Time Symmetry in Operational Theories. arXiv preprint arXiv:2104.00071v1.
  57. Chris Heunen & Jamie Vicary (2019): Categories for Quantum Theory. Categories for Quantum Theory, doi:10.1093/OSO/9780198739623.001.0001.
  58. P. T. Johnstone (1983): Basic Concepts of Enriched Category Theory (London Mathematical Society Lecture Note Series, 64). Bulletin of the London Mathematical Society 15(1), pp. 96–96, doi:10.1112/blms/15.1.96. Available at
  59. Aleks Kissinger & Sander Uijlen (2019): A categorical semantics for causal structure. Logical Methods in Computer Science 15(3), doi:10.23638/LMCS-15(3:15)2019.
  60. Hlér Kristjánsson, Giulio Chiribella, Sina Salek, Daniel Ebler & Matthew Wilson (2020): Resource theories of communication. New Journal of Physics 22(7), pp. 073014, doi:10.1088/1367-2630/ab8ef7.
  61. Saunders Mac Lane (1971): Categories for the Working Mathematician. Graduate Texts in Mathematics 5. Springer New York, New York, NY, doi:10.1007/978-1-4612-9839-7. Available at
  62. Yunchao Liu & Xiao Yuan (2035): Operational resource theory of quantum channels. Physical Review Research 2, doi:10.1103/PhysRevResearch.2.012035.
  63. Zi-Wen Liu & Andreas Winter (2019): Resource theories of quantum channels and the universal role of resource erasure. arXiv preprint arXiv:1904.04201. Available at
  64. Giacomo Mauro D'Ariano, Giulio Chiribella & Paolo Perinotti (2017): Quantum Theory from First Principles. Cambridge University Press, doi:10.1017/9781107338340.
  65. Pau Enrique Moliner, Chris Heunen & Sean Tull (2017): Space in Monoidal Categories. In: Bob Coecke & Aleks Kissinger: Proceedings 14th International Conference on Quantum Physics and Logic, QPL 2017, Nijmegen, The Netherlands, 3-7 July 2017, EPTCS 266, pp. 399–410, doi:10.4204/EPTCS.266.25.
  66. Ognyan Oreshkov, Fabio Costa & \begingroupłet [Pleaseinsert\PrerenderUnicodeČintopreamble]aslav Brukner (2012): Quantum correlations with no causal order. Nature Communications 3, doi:10.1038/ncomms2076.
  67. Paolo Perinotti (2017): Causal Structures and the Classification of Higher Order Quantum Computations. Birkhäuser, Cham, pp. 103–127, doi:10.1007/978-3-319-68655-4_7. Available at
  68. Nicola Pinzani & Stefano Gogioso (2020): Giving Operational Meaning to the Superposition of Causal Orders. arXiv preprint arXiv:2003.13306. Available at
  69. Lorenzo M. Procopio, Francisco Delgado, Marco Enríquez, Nadia Belabas & Juan Ariel Levenson (2019): Communication Enhancement through Quantum Coherent Control of N Channels in an Indefinite Causal-Order Scenario. Entropy 21(10), pp. 1012, doi:10.3390/e21101012. Available at
  70. Lorenzo M. Procopio, Francisco Delgado, Marco Enríquez, Nadia Belabas & Juan Ariel Levenson (2020): Sending classical information via three noisy channels in superposition of causal orders. Physical Review A 101(1), pp. 012346, doi:10.1103/PhysRevA.101.012346.
  71. Marco Túlio Quintino, Qingxiuxiong Dong, Atsushi Shimbo, Akihito Soeda & Mio Murao (2019): Reversing Unknown Quantum Transformations: Universal Quantum Circuit for Inverting General Unitary Operations. Physical Review Letters 123(21), pp. 210502, doi:10.1103/PhysRevLett.123.210502. Available at
  72. Mario Román (2020): Comb Diagrams for Discrete-Time Feedback. arXiv preprint arXiv:2003.06214v1.
  73. Mario Román (2020): Open Diagrams via Coend Calculus. In: David I. Spivak & Jamie Vicary: Proceedings of the 3rd Annual International Applied Category Theory Conference 2020, ACT 2020, Cambridge, USA, 6-10th July 2020, EPTCS 333, pp. 65–78, doi:10.4204/EPTCS.333.5.
  74. Sina Salek, Daniel Ebler & Giulio Chiribella (2018): Quantum communication in a superposition of causal orders. arXiv preprint arXiv:1809.06655. Available at
  75. Sk Sazim, Michal Sedlak, Kratveer Singh & Arun Kumar Pati (2021): Classical communication with indefinite causal order for N completely depolarizing channels. Phys. Rev. A 103, pp. 062610, doi:10.1103/PhysRevA.103.062610. Available at
  76. David Schmid, John H Selby & Robert W Spekkens: Unscrambling the omelette of causation and inference: The framework of causal-inferential theories. arXiv preprint arXiv:2009.03297v2.
  77. John Selby & Bob Coecke (2017): Leaks: Quantum, Classical, Intermediate and More. Entropy 19(4), pp. 174, doi:10.3390/e19040174. Available at
  78. John H. Selby & Bob Coecke (2017): A Diagrammatic Derivation of the Hermitian Adjoint. Foundations of Physics 47(9), pp. 1191–1207, doi:10.1007/s10701-017-0102-7. Available at
  79. John H Selby & Ciarán M Lee (2020): Compositional resource theories of coherence. Technical Report, doi:10.22331/q-2020-09-11-319.
  80. John H. Selby, Carlo Maria Scandolo & Bob Coecke (2021): Reconstructing quantum theory from diagrammatic postulates. Quantum 5, pp. 445, doi:10.22331/q-2021-04-28-445.
  81. Peter Selinger (2004): Towards a quantum programming language. Mathematical Structures in Computer Science 14(4), pp. 527–586, doi:10.1017/S0960129504004256.
  82. Peter Selinger (2007): Dagger Compact Closed Categories and Completely Positive Maps. (Extended Abstract). Electronic Notes in Theoretical Computer Science 170, pp. 139–163, doi:10.1016/j.entcs.2006.12.018.
  83. Peter Selinger & Beno\begingroupłet [Pleaseinsert\PrerenderUnicodeıintopreamble]t Valiron: A Lambda Calculus for Quantum Computation with Classical Control. Typed Lambda Calculi and Applications, doi:10.1007/1141717026.
  84. Sean Tull (2020): A Categorical Reconstruction of Quantum Theory. Logical Methods in Computer Science 16(1), pp. 39, doi:10.23638/LMCS-16(1:4)2020. Available at
  85. André Van Tonder (2004): A lambda calculus for quantum computation. SIAM Journal on Computing 33(5), pp. 1109–1135, doi:10.1137/S0097539703432165. Available at
  86. Augustin Vanrietvelde, Hlér Kristjánsson & Jonathan Barrett (2021): Routed quantum circuits. Quantum 5, pp. 503, doi:10.22331/q-2021-07-13-503. Available at
  87. Julian Wechs, Hippolyte Dourdent, Alastair A Abbott & Cyril Branciard: Quantum circuits with classical versus quantum control of causal order. arXiv preprint arXiv:2101.08796v1.
  88. Mark M. Wilde (2013): Quantum Information Theory. Cambridge University Press, Cambridge, doi:10.1017/CBO9781139525343. Available at
  89. Matt Wilson & Giulio Chiribella: A Mathematical Framework for Higher Order Physical Theories. Available at
  90. Matthew Wilson & Giulio Chiribella (2020): A Diagrammatic Approach to Information Transmission in Generalised Switches. arXiv preprint arXiv:2003.08224. Available at
  91. William K Wootters (1990): Local accessibility of quantum states. Complexity, entropy and the physics of information 8, pp. 39–46.
  92. Wataru Yokojima, Marco Túlio Quintino, Akihito Soeda & Mio Murao (2021): Consequences of preserving reversibility in quantum superchannels. Quantum 5, pp. 441, doi:10.22331/q-2021-04-26-441. Available at
  93. Xiaobin Zhao, Yuxiang Yang & Giulio Chiribella (2020): Quantum Metrology with Indefinite Causal Order. Physical Review Letters 124(19), pp. 190503, doi:10.1103/PhysRevLett.124.190503. Available at
  94. Margherita Zorzi (2016): On quantum lambda calculi: a foundational perspective. Mathematical Structures in Computer Science 26(7), pp. 1107\begingroupłet [Pleaseinsert\PrerenderUnicode–intopreamble]1195, doi:10.1017/S0960129514000425.

Comments and questions to:
For website issues: