1. Dorit Aharonov (2003): A simple proof that Toffoli and Hadamard are quantum universal. Available at arXiv:
  2. Matthew Amy (2019): Towards large-scale functional verification of universal quantum circuits. Electronic Proceedings in Theoretical Computer Science 287, pp. 1–21, doi:10.4204/EPTCS.287.1.
  3. Matthew Amy, Andrew N. Glaudell & Neil J. Ross (2020): Number-theoretic characterizations of some restricted Clifford+T circuits. Quantum 4, pp. 252, doi:10.22331/q-2020-04-06-252. Also available at arXiv:
  4. Michael J. Bremner, Richard Jozsa & Dan J. Shepherd (2011): Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proceedings of The Royal Society A 467(2126), doi:10.1098/rspa.2010.0301. Also available at arXiv:
  5. Simon Forest, David Gosset, Vadym Kliuchnikov & David McKinnon (2015): Exact synthesis of single-qubit unitaries over Clifford-Cyclotomic gate sets. Journal of Mathematical Physics 56(8), pp. 082201, doi:10.1063/1.4927100. Also available at arXiv:
  6. Brett Giles & Peter Selinger (2013): Exact synthesis of multiqubit Clifford+T circuits. Physical Review A 87(3), pp. 032332, doi:10.1103/PhysRevA.87.032332. Also available at arXiv:
  7. Andrew N. Glaudell, Neil J. Ross & Jacob M. Taylor (2021): Optimal two-qubit circuits for universal fault-tolerant quantum computation. npj Quantum Information 7(103), doi:10.1038/s41534-021-00424-z.
  8. Seth E. M. Greylyn (2014): Generators and relations for the group U_4(Z[1/2,i]). Department of Mathematics and Statistics, Dalhousie University. Available at arXiv:
  9. Phillip Kaye, Raymond Laflamme & Michele Mosca (2007): An Introduction to Quantum Computing. Oxford University Press, doi:10.1093/oso/9780198570004.001.0001.
  10. Vadym Kliuchnikov, Alex Bocharov, Martin Roetteler & Jon Yard (2015): A framework for approximating qubit unitaries. Available at arXiv:
  11. Vadym Kliuchnikov, Dmitri Maslov & Michele Mosca (2013): Fast and efficient exact synthesis of single-qubit unitaries generated by Clifford and T gates. Quantum Information & Computation 13(7-8), pp. 607–630, doi:10.26421/QIC13.7-8-4. Avaiable at arXiv:
  12. Vadym Kliuchnikov, Dmitri Maslov & Michele Mosca (2016): Practical approximation of single-qubit unitaries by single-qubit quantum Clifford and T circuits. IEEE Transactions on Computers 65(1), pp. 161–172, doi:10.1109/TC.2015.2409842. Also available at arXiv:
  13. Vadym Kliuchnikov & Jon Yard (2015): A framework for exact synthesis. Available at arXiv:
  14. Ashley Montanaro (2017): Quantum circuits and low-degree polynomials over F_2. Journal of Physics A 50(8), pp. 084002, doi:10.1088/1751-8121/aa565f. Also available at arXiv:
  15. Neil J. Ross (2015): Optimal ancilla-Free Clifford+V approximation of z-rotations. Quantum Information & Computation 15(11–12), pp. 932–950, doi:10.26421/QIC15.11-12-4. Also available at arXiv:
  16. Neil J. Ross & Peter Selinger (2016): Optimal ancilla-free Clifford+T approximation of z-rotations. Quantum Information & Computation 16(11–12), pp. 901–953, doi:10.26421/QIC16.11-12-1. Also available at arXiv:
  17. Yaoyun Shi (2003): Both Toffoli and Controlled-NOT need little help to do universal quantum computing. Quantum Information & Computation 3(1), pp. 84–92, doi:10.26421/QIC3.1-7. Also available at arXiv:

Comments and questions to:
For website issues: