1. Miriam Backens & Aleks Kissinger (2019): ZH: A Complete Graphical Calculus for Quantum Computations Involving Classical Non-linearity. In: Peter Selinger & Giulio Chiribella: Proceedings of the 15th International Conference on Quantum Physics and Logic, Halifax, Canada, 3-7th June 2018, Electronic Proceedings in Theoretical Computer Science 287. Open Publishing Association, pp. 23–42, doi:10.4204/EPTCS.287.2.
  2. Niel de Beaudrap (2020): Well-tempered ZX and ZH calculi. arXiv preprint arXiv:2006.02557.
  3. Niel de Beaudrap, Xiaoning Bian & Quanlong Wang (2020): Fast and Effective Techniques for T-Count Reduction via Spider Nest Identities. In: 15th Conference on the Theory of Quantum Computation, Communication and Cryptography, doi:10.4230/LIPIcs.TQC.2020.11.
  4. Niel de Beaudrap, Ross Duncan, Dominic Horsman & Simon Perdrix (2020): Pauli Fusion: a Computational Model to Realise Quantum Transformations from ZX Terms. In: Bob Coecke & Matthew Leifer: Proceedings 16th International Conference on Quantum Physics and Logic, Chapman University, Orange, CA, USA., 10-14 June 2019, Electronic Proceedings in Theoretical Computer Science 318. Open Publishing Association, pp. 85–105, doi:10.4204/EPTCS.318.6.
  5. Niel de Beaudrap & Dominic Horsman (2017): The ZX calculus is a language for surface code lattice surgery., doi:10.22331/q-2020-01-09-218.
  6. Ethan Bernstein & Umesh Vazirani (1997): Quantum complexity theory. SIAM Journal on computing 26(5), pp. 1411–1473, doi:10.1145/167088.167097.
  7. Titouan Carette, Dominic Horsman & Simon Perdrix (2019): SZX-Calculus: Scalable Graphical Quantum Reasoning. In: 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, doi:10.4230/LIPIcs.MFCS.2019.55.
  8. Titouan Carette, Emmanuel Jeandel, Simon Perdrix & Renaud Vilmart (2019): Completeness of Graphical Languages for Mixed States Quantum Mechanics. In: International Colloquium on Automata, Languages, and Programming (ICALP'19), doi:10.4230/LIPIcs.ICALP.2019.108.
  9. Titouan Carette & Simon Perdrix (2020): Colored props for large scale graphical reasoning. arXiv preprint arXiv:2007.03564.
  10. Nicholas Chancellor, Aleks Kissinger, Joschka Roffe, Stefan Zohren & Dominic Horsman (2016): Graphical structures for design and verification of quantum error correction. arXiv preprint arXiv:1611.08012.
  11. Apiwat Chantawibul & PawełSobociński (2018): Monoidal Multiplexing. In: International Colloquium on Theoretical Aspects of Computing. Springer, pp. 116–131, doi:10.1007/978-3-030-02508-3_7.
  12. Bob Coecke & Ross Duncan: Interacting quantum observables: categorical algebra and diagrammatics. New Journal of Physics 13(4), pp. 043016, doi:10.1007/978-3-540-70583-3_25], year = 2011.
  13. Bob Coecke & Aleks Kissinger (2017): Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, doi:10.1017/9781316219317.
  14. David Deutsch & Richard Jozsa (1992): Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 439(1907), pp. 553–558, doi:10.1098/rspa.1992.0167.
  15. Ross Duncan, Aleks Kissinger, Simon Pedrix & John van de Wetering (2019): Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus. arXiv preprint arXiv:1902.03178, doi:10.22331/q-2020-06-04-279.
  16. Craig Gidney & Austin G Fowler (2018): Efficient magic state factories with a catalyzed |CCZ> to 2|T> transformation. arXiv preprint arXiv:1812.01238, doi:10.22331/q-2019-04-30-135.
  17. Stefano Gogioso & Aleks Kissinger (2017): Fully graphical treatment of the quantum algorithm for the Hidden Subgroup Problem. arXiv preprint arXiv:1701.08669.
  18. L. K. Grover (1997): Quantum Mechanics Helps in Searching for a Needle in a Haystack. Phys. Rev. Lett. 79, pp. 325, doi:10.1103/PhysRevLett.79.325.
  19. Amar Hadzihasanovic (2018): ZW calculi: diagrammatic languages for pure-state quantum computing. Logic and Applications LAP 2018, pp. 13.
  20. Amar Hadzihasanovic, Kang Feng Ng & Quanlong Wang (2018): Two Complete Axiomatisations of Pure-state Qubit Quantum Computing. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '18. ACM, New York, NY, USA, pp. 502–511, doi:10.1145/3209108.3209128.
  21. Michael Hanks, Marta P Estarellas, William J Munro & Kae Nemoto (2020): Effective Compression of Quantum Braided Circuits Aided by ZX-Calculus. Physical Review X 10(4), pp. 041030, doi:10.1103/PhysRevX.10.041030.
  22. Emmanuel Jeandel, Simon Perdrix & Renaud Vilmart (2018): A complete axiomatisation of the ZX-calculus for Clifford+T quantum mechanics. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). ACM, pp. 559–568, doi:10.1145/3209108.3209131.
  23. Emmanuel Jeandel, Simon Perdrix & Renaud Vilmart (2018): Diagrammatic reasoning beyond Clifford+ T quantum mechanics. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). ACM, pp. 569–578, doi:10.1145/3209108.3209139.
  24. Aleks Kissinger & John van de Wetering (2019): Reducing T-count with the ZX-calculus. arXiv preprint arXiv:1903.10477.
  25. Michael A Nielsen & Isaac Chuang (2002): Quantum computation and quantum information.
  26. Daniel R Simon (1997): On the power of quantum computation. SIAM journal on computing 26(5), pp. 1474–1483, doi:10.1137/S0097539796298637.
  27. Jamie Vicary (2013): Topological structure of quantum algorithms. In: 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science. IEEE, pp. 93–102, doi:10.1109/LICS.2013.14.
  28. William Zeng & Jamie Vicary (2014): Abstract structure of unitary oracles for quantum algorithms. arXiv preprint arXiv:1406.1278, doi:10.4204/EPTCS.172.19.

Comments and questions to:
For website issues: