1. Luigi Accardi & Carlo Cecchini (1982): Conditional expectations in von Neumann algebras and a theorem of Takesaki. J. Funct. Anal. 45(2), pp. 245–273, doi:10.1016/0022-1236(82)90022-2.
  2. Howard Barnum, Jonathan Barrett, Matthew Leifer & Alexander Wilce (2007): Generalized No-Broadcasting Theorem. Phys. Rev. Lett. 99, pp. 240501, doi:10.1103/PhysRevLett.99.240501.
  3. Howard Barnum & Emanuel Knill (2002): Reversing quantum dynamics with near-optimal quantum and classical fidelity. J. Math. Phys. 43(5), pp. 2097–2106, doi:10.1063/1.1459754.
  4. David Bohm (1951): Quantum theory. Prentice-Hall, Englewood Cliffs, NJ. Also as reprint ed.: New York, NY, Dover Publications, 1989.
  5. Kenta Cho & Bart Jacobs (2019): Disintegration and Bayesian inversion via string diagrams. Math. Struct. Comp. Sci., pp. 1–34, doi:10.1017/S0960129518000488.
  6. Florence Clerc, Vincent Danos, Fredrik Dahlqvist & Ilias Garnier (2017): Pointless learning. In: Foundations of software science and computation structures, Lecture Notes in Comput. Sci. 10203. Springer, Berlin, pp. 355–369, doi:10.1007/978-3-662-54458-7_21.
  7. Bob Coecke & Robert W. Spekkens (2012): Picturing classical and quantum Bayesian inference. Synthese 186(3), pp. 651–696, doi:10.1007/s11229-011-9917-5.
  8. Jared Culbertson & Kirk Sturtz (2014): A categorical foundation for Bayesian probability. Appl. Categ. Structures 22(4), pp. 647–662, doi:10.1007/s10485-013-9324-9.
  9. Fredrik Dahlqvist, Vincent Danos, Ilias Garnier & Ohad Kammar (2016): Bayesian Inversion by Omega-Complete Cone Duality. In: Josée Desharnais & Radha Jagadeesan: 27th International Conference on Concurrency Theory (CONCUR 2016), Leibniz International Proceedings in Informatics (LIPIcs) 59. Schloss Dagstuhl–Leibniz–Zentrum fuer Informatik, pp. 1:1–1:15, doi:10.4230/LIPIcs.CONCUR.2016.1.
  10. Albert Einstein, Boris Podolsky & Nathan Rosen (1935): Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?. Phys. Rev. 47, pp. 777–780, doi:10.1103/PhysRev.47.777.
  11. Douglas R. Farenick (2001): Algebras of linear transformations. Universitext. Springer-Verlag, New York, doi:10.1007/978-1-4613-0097-7.
  12. Brendan Fong (2012): Causal theories: A categorical perspective on Bayesian networks. University of Oxford. University of Oxford. Available at arXiv:1301.6201 [math.PR].
  13. Tobias Fritz (2020): A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics. Adv. Math. 370, pp. 107239, doi:10.1016/j.aim.2020.107239.
  14. Robert Furber & Bart Jacobs (2015): From Kleisli categories to commutative C^*-algebras: probabilistic Gelfand duality. Log. Methods Comput. Sci. 11(2), pp. 1:5, 28, doi:10.2168/LMCS-11(2:5)2015.
  15. Bart Jacobs (2019): Lower and Upper Conditioning in Quantum Bayesian Theory. In: Peter Selinger & Giulio Chiribella: Proceedings of the 15th International Conference on Quantum Physics and Logic, Halifax, Canada, 3-7th June 2018, Electronic Proceedings in Theoretical Computer Science 287. Open Publishing Association, pp. 225–238, doi:10.4204/EPTCS.287.13.
  16. Matthew S. Leifer (2006): Quantum dynamics as an analog of conditional probability. Phys. Rev. A 74, pp. 042310, doi:10.1103/PhysRevA.74.042310.
  17. Matthew S. Leifer & Robert W. Spekkens (2013): Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Phys. Rev. A 88, pp. 052130, doi:10.1103/PhysRevA.88.052130.
  18. Hans Maassen (2010): Quantum probability and quantum information theory. In: Quantum information, computation and cryptography, Lect. Notes Physics. Springer, pp. 65–108, doi:10.1007/978-3-642-11914-9_3.
  19. Arthur J. Parzygnat (2017): Discrete probabilistic and algebraic dynamics: a stochastic Gelfand–Naimark Theorem. ArXiv preprint: 1708.00091 [math.FA].
  20. Arthur J. Parzygnat (2020): Inverses, disintegrations, and Bayesian inversion in quantum Markov categories. ArXiv preprint: 2001.08375 [quant-ph].
  21. Arthur J. Parzygnat & Benjamin P. Russo (2019): Non-commutative disintegrations: existence and uniqueness in finite dimensions. ArXiv preprint: 1907.09689 [quant-ph].
  22. Arthur J. Parzygnat & Benjamin P. Russo (2020): A non-commutative Bayes' theorem. ArXiv preprint: 2005.03886 [quant-ph].
  23. Dénes Petz (1984): A dual in von Neumann algebras with weights. Q. J. Math 35(4), pp. 475–483, doi:10.1093/qmath/35.4.475.
  24. Dénes Petz (1988): Sufficiency of channels over von Neumann algebras. Q. J. Math. 39(1), pp. 97–108, doi:10.1093/qmath/39.1.97.
  25. Peter Selinger (2010): A Survey of Graphical Languages for Monoidal Categories. Lect. Notes Phys., pp. 289–355, doi:10.1007/978-3-642-12821-9_4.
  26. Masamichi Takesaki (1970): Tomita's theory of modular Hilbert algebras and its applications. Lecture Notes in Mathematics 128. Springer, doi:10.1007/BFb0065832.
  27. Armin Uhlmann (2016): Anti- (Conjugate) Linearity. Sci. China Phys. Mech. Astron. 59(3), pp. 630301, doi:10.1007/s11433-015-5777-1.

Comments and questions to:
For website issues: