1. Nick Benton & Philip Wadler (1996): Linear Logic, Monads and the Lambda Calculus. In: Proceedings of the 11th Symposium on Logic in Computer Science, LICS'96. IEEE. IEEE Computer Society Press, pp. 420–431, doi:10.1109/LICS.1996.561458.
  2. P.N. Benton (1994): A mixed linear and non-linear logic: Proofs, terms and models. Available at Technical Report.
  3. P.N. Benton (1995): A mixed linear and non-linear logic: Proofs, terms and models. In: Proc. CSL '94, Selected Papers. Springer, pp. 121–135, doi:10.1007/BFb0022251.
  4. F. Borceux (1994): Handbook of Categorical Algebra 1: Basic Category Theory. Cambridge University Press, doi:10.1017/CBO9780511525872.
  5. L. Caires & F.. Pfenning (2010): Session types as intuitionistic linear propositions. In: Proc. CONCUR 2010, pp. 222–236, doi:10.1007/978-3-642-15375-4_16.
  6. K. Cho & A. Westerbaan (2016): Von Neumann Algebras form a Model for the Quantum Lambda Calculus. Available as arXiv:1603.02113.
  7. M. P. Fiore (1994): Axiomatic domain theory in categories of partial maps. Cambridge University Press, doi:10.1017/CBO9780511526565.
  8. Marcelo Fiore & Gordon Plotkin (1994): An Axiomatization of Computationally Adequate Domain Theoretic Models of FPC. In: Proc. LICS'94. IEEE, pp. 92–102, doi:10.1109/LICS.1994.316083.
  9. Andre Kornell (2020): Quantum sets. J. Math. Phys. 61(10), pp. 102202, doi:10.1063/1.5054128.
  10. G. Kuperberg & N. Weaver (2012): A Von Neumann Algebra Approach to Quantum Metrics: Quantum Relations. Memoirs of the American Mathematical Society 215. AMS, doi:10.1090/S0065-9266-2011-00637-4.
  11. Daniel J Lehmann & Michael B Smyth (1981): Algebraic specification of data types: A synthetic approach. Mathematical Systems Theory 14, pp. 97139, doi:10.1007/BF01752392.
  12. Bert Lindenhovius, Michael Mislove & Vladimir Zamdzhiev (2018): Enriching a Linear/Non-linear Lambda Calculus: A Programming Language for String Diagrams. In: Proc. LICS'18. ACM, pp. 659–668, doi:10.1145/3209108.3209196.
  13. Bert Lindenhovius, Michael W. Mislove & Vladimir Zamdzhiev (2021): LNL-FPC: The Linear/Non-linear Fixpoint Calculus. Log. Methods Comput. Sci. 17(2), doi:10.23638/LMCS-17(2:9)2021.
  14. P.-A. Melliès (2003): Categorical models of linear logic revisited. Available as hal-00154229..
  15. M. A. Nielsen & I. L. Chuang (2010): Quantum Computation and Quantum Information, 10th anniversary edition edition. Cambridge University Press, doi:10.1017/CBO9780511976667.
  16. Michele Pagani, Peter Selinger & Benoît Valiron (2014): Applying quantitative semantics to higher-order quantum computing. In: Proc. POPL'14,. ACM, pp. 647–658, doi:10.1145/2535838.2535879.
  17. J. Paykin, R. Rand & S. Zdancewic (2017): QWIRE: a core language for quantum circuits. In: Proc. POPL'17. ACM, pp. 846–858, doi:10.1145/3009837.3009894.
  18. Romain Péchoux, Simon Perdrix, Mathys Rennela & Vladimir Zamdzhiev (2020): Quantum Programming with Inductive Datatypes: Causality and Affine Type Theory. In: Proc. FoSSaCS 2020, Lecture Notes in Computer Science 12077. Springer, pp. 562–581, doi:10.1007/978-3-030-45231-5_29.
  19. Mathys Rennela & Sam Staton (2020): Classical Control, Quantum Circuits and Linear Logic in Enriched Category Theory. Logical Methods in Computer Science 6(1), doi:10.23638/LMCS-16(1:30)2020.
  20. Francisco Rios & Peter Selinger (2017): A categorical model for a quantum circuit description language. In: Proc. QPL 2017, EPTCS 266, pp. 164–178, doi:10.4204/EPTCS.266.11.
  21. U. Sasaki (1954): Orthocomplemented Lattices Satisfying the Exchange Axiom. J. Sci. Hiroshima Univ. Ser. A 17(3), pp. 293–302, doi:10.32917/hmj/1557281141.
  22. P. Selinger & B. Valiron (2006): A lambda calculus for quantum computation with classical control. Mathematical Structures in Computer Science 16(3), pp. 527–552, doi:10.1017/S0960129506005238.
  23. M. Takesaki (2000): Theory of Operator Algebra I. Springer.
  24. Trenar3: Quantum Fourier transform. Wikimedia, available at
  25. N. Weaver (2012): Quantum relations. Mem. Amer. Math. Soc. 215, pp. v-vi, 81-140, doi:10.1090/S0065-9266-2011-00637-4.
  26. N. Weaver (2020): Hereditarily antisymmetric operator algebras. J. Inst. Math. Jussieu 20, pp. 1039–1074, doi:10.1017/S1474748019000483.

Comments and questions to:
For website issues: