1. Miriam Backens & Aleks Kissinger (2019): ZH: A Complete Graphical Calculus for Quantum Computations Involving Classical Non-linearity. In: Proceedings of the 15th International Conference on Quantum Physics and Logic 287. Open Publishing Association, pp. 23–42, doi:10.4204/eptcs.287.2.
  2. Filippo Bonchi, Dusko Pavlovic & Pawel Sobocinski (2017): Functorial semantics for relational theories. Available at ArXiv preprint.
  3. Filippo Bonchi, PawełSobociński & Fabio Zanasi (2017): Interacting Hopf algebras. Journal of Pure and Applied Algebra 221(1), pp. 144–184, doi:10.1016/j.jpaa.2016.06.002. Available at
  4. Roberto Bruni & Fabio Gadducci (2003): Some algebraic laws for spans (and their connections with multirelations). Electronic Notes in Theoretical Computer Science 44(3), pp. 175–193, doi:10.1016/S1571-0661(04)80937-X.
  5. Carsten Butz (1998): Regular categories and regular logic. Available at
  6. Aurelio Carboni & Robert FC Walters (1987): Cartesian bicategories I. Journal of pure and applied algebra 49(1-2), pp. 11–32, doi:10.1016/0022-4049(87)90121-6. Available at
  7. Titouan Carette & Emmanuel Jeandel (2020): A Recipe for Quantum Graphical Languages. In: Artur Czumaj, Anuj Dawar & Emanuela Merelli: 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020), Leibniz International Proceedings in Informatics (LIPIcs) 168. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 118:1–118:17, doi:10.4230/LIPIcs.ICALP.2020.118.
  8. Eugenia Cheng (2020): Distributive laws for Lawvere theories. Compositionality 2, pp. 1, doi:10.32408/compositionality-2-1.
  9. JRB Cockett & Cole Comfort (2019): The Category TOF. In: Proceedings 15th International Conference on Quantum Physics and Logic 287. Open Publishing Association, pp. 67–84, doi:10.4204/eptcs.287.4.
  10. JRB Cockett & Stephen Lack (2002): Restriction categories I: categories of partial maps. Theoretical computer science 270(1-2), pp. 223–259, doi:10.1016/S0304-3975(00)00382-0. Available at
  11. JRB Cockett & Stephen Lack (2007): Restriction categories III: colimits, partial limits and extensivity. Mathematical Structures in Computer Science 17(4), pp. 775–817, doi:10.1017/S0960129507006056. Available at
  12. Robin Cockett, Cole Comfort & Priyaa Srinivasan (2018): The Category CNOT. In: Proceedings 14th International Conference on Quantum Physics and Logic 266. Open Publishing Association, pp. 258–293, doi:10.4204/eptcs.266.18.
  13. Bob Coecke & Chris Heunen (2016): Pictures of complete positivity in arbitrary dimension. Information and Computation 250, pp. 50–58, doi:10.1016/j.ic.2016.02.007. Available at
  14. Bob Coecke, Chris Heunen & Aleks Kissinger (2016): Categories of quantum and classical channels. Quantum Information Processing 15(12), pp. 5179–5209, doi:10.1007/s11128-014-0837-4. Available at
  15. Bob Coecke & Aleks Kissinger (2017): Picturing quantum processes. Cambridge University Press, doi:10.1017/9781316219317.
  16. Bob Coecke, Eric Oliver Paquette & Dusko Pavlovic (2009): Classical and quantum structuralism. Semantic Techniques in Quantum Computation, pp. 29–69, doi:10.1017/CBO9781139193313.003. Available at
  17. Bob Coecke & Simon Perdrix (2010): Environment and classical channels in categorical quantum mechanics. In: International Workshop on Computer Science Logic. Springer, pp. 230–244, doi:10.2168/LMCS-8(4:14)2012. Available at
  18. Bob Coecke, John Selby & Sean Tull (2018): Two Roads to Classicality. In: Proceedings 14th International Conference on Quantum Physics and Logic 266. Open Publishing Association, pp. 104–118, doi:10.4204/eptcs.266.7.
  19. Cole Comfort (2019): Classifying Reversible Logic Gates with Ancillary Bits. University of Calgary. Available at
  20. Niel de Beaudrap, Aleks Kissinger & Konstantinos Meichanetzidis (2020): Satisfiability and Counting with Graphical Calculi. In: Proceedings 17th International Conference on Quantum Physics and Logic. Open Publishing Association. Available at
  21. Ross Duncan & Kevin Dunne (2016): Interacting Frobenius Algebras are Hopf. In: 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, pp. 1–10, doi:10.1145/2933575.2934550. Available at
  22. Brett Giles (2014): An investigation of some theoretical aspects of reversible computing. University of Calgary, doi:10.11575/PRISM/24917.
  23. Michael Herrmann (2010): Models of multipartite entanglement. University of Oxford. Available at
  24. Chris Heunen (2013): On the functor ^2. In: Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky. Springer, pp. 107–121, doi:10.1007/978-3-642-38164-5_8. Available at
  25. Kazuo Iwama, Yahiko Kambayashi & Shigeru Yamashita (2002): Transformation rules for designing CNOT-based quantum circuits. In: Proceedings of the 39th annual Design Automation Conference, pp. 419–424, doi:10.1109/DAC.2002.1012662.
  26. Stephen Lack (2004): Composing props. Theory and Applications of Categories 13(9), pp. 147–163. Available at
  27. Yves Lafont (2003): Towards an algebraic theory of boolean circuits. Journal of Pure and Applied Algebra 184(2-3), pp. 257–310, doi:10.1016/S0022-4049(03)00069-0. Available at
  28. Anthony Munson, Bob Coecke & Quanlong Wang (2019): A note on AND-gates in ZX-calculus: QBC-completeness and phase gadgets. Available at ArXiv preprint.
  29. Robin Piedeleu (2018): Picturing resources in concurrency. University of Oxford. Available at
  30. Edmund Robinson & Giuseppe Rosolini (1988): Categories of partial maps. Information and computation 79(2), pp. 95–130, doi:10.1016/0890-5401(88)90034-X. Available at
  31. Robert Rosebrugh & Richard J Wood (2002): Distributive laws and factorization. Journal of Pure and Applied Algebra 175(1-3), pp. 327–353, doi:10.1016/S0022-4049(02)00140-8. Available at
  32. Peter Selinger (2007): Dagger compact closed categories and completely positive maps. Electronic Notes in Theoretical computer science 170, pp. 139–163, doi:10.1016/j.entcs.2006.12.018. Available at
  33. Quanlong Wang (2019): ZX-calculus over arbitrary commutative rings and semirings. Available at ArXiv preprint.
  34. John van de Wetering & Sal Wolffs (2019): Completeness of the Phase-free ZH-calculus. Available at ArXiv preprint.

Comments and questions to:
For website issues: